2,074 research outputs found

    Multi-purpose exploratory mining of complex data

    Get PDF
    Due to the increasing power of data acquisition and data storage technologies, a large amount of data sets with complex structure are collected in the era of data explosion. Instead of simple representations by low-dimensional numerical features, such data sources range from high-dimensional feature spaces to graph data describing relationships among objects. Many techniques exist in the literature for mining simple numerical data but only a few approaches touch the increasing challenge of mining complex data, such as high-dimensional vectors of non-numerical data type, time series data, graphs, and multi-instance data where each object is represented by a finite set of feature vectors. Besides, there are many important data mining tasks for high-dimensional data, such as clustering, outlier detection, dimensionality reduction, similarity search, classification, prediction and result interpretation. Many algorithms have been proposed to solve these tasks separately, although in some cases they are closely related. Detecting and exploiting the relationships among them is another important challenge. This thesis aims to solve these challenges in order to gain new knowledge from complex high-dimensional data. We propose several new algorithms combining different data mining tasks to acquire novel knowledge from complex high-dimensional data: ROCAT (Relevant Overlapping Subspace Clusters on Categorical Data) automatically detects the most relevant overlapping subspace clusters on categorical data. It integrates clustering, feature selection and pattern mining without any input parameters in an information theoretic way. The next algorithm MSS (Multiple Subspace Selection) finds multiple low-dimensional subspaces for moderately high-dimensional data, each exhibiting an interesting cluster structure. For better interpretation of the results, MSS visualizes the clusters in multiple low-dimensional subspaces in a hierarchical way. SCMiner (Summarization-Compression Miner) focuses on bipartite graph data, which integrates co-clustering, graph summarization, link prediction, and the discovery of the hidden structure of a bipartite graph data on the basis of data compression. Finally, we propose a novel similarity measure for multi-instance data. The Probabilistic Integral Metric (PIM) is based on a probabilistic generative model requiring few assumptions. Experiments demonstrate the effectiveness and efficiency of PIM for similarity search (multi-instance data indexing with M-tree), explorative data analysis and data mining (multi-instance classification). To sum up, we propose algorithms combining different data mining tasks for complex data with various data types and data structures to discover the novel knowledge hidden behind the complex data

    Categorical Dimensions of Human Odor Descriptor Space Revealed by Non-Negative Matrix Factorization

    Get PDF
    In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain unclear. Here, we use non-negative matrix factorization (NMF) – a dimensionality reduction technique – to uncover structure in a panel of odor profiles, with each odor defined as a point in multi-dimensional descriptor space. The properties of NMF are favorable for the analysis of such lexical and perceptual data, and lead to a high-dimensional account of odor space. We further provide evidence that odor dimensions apply categorically. That is, odor space is not occupied homogenously, but rather in a discrete and intrinsically clustered manner. We discuss the potential implications of these results for the neural coding of odors, as well as for developing classifiers on larger datasets that may be useful for predicting perceptual qualities from chemical structures

    Clustering high dimensional data using subspace and projected clustering algorithms

    Get PDF
    Problem statement: Clustering has a number of techniques that have been developed in statistics, pattern recognition, data mining, and other fields. Subspace clustering enumerates clusters of objects in all subspaces of a dataset. It tends to produce many over lapping clusters. Approach: Subspace clustering and projected clustering are research areas for clustering in high dimensional spaces. In this research we experiment three clustering oriented algorithms, PROCLUS, P3C and STATPC. Results: In general, PROCLUS performs better in terms of time of calculation and produced the least number of un-clustered data while STATPC outperforms PROCLUS and P3C in the accuracy of both cluster points and relevant attributes found. Conclusions/Recommendations: In this study, we analyze in detail the properties of different data clustering method.Comment: 9 pages, 6 figure

    Clustering Algorithms For High Dimensional Data – A Survey Of Issues And Existing Approaches

    Get PDF
    Clustering is the most prominent data mining technique used for grouping the data into clusters based on distance measures. With the advent growth of high dimensional data such as microarray gene expression data, and grouping high dimensional data into clusters will encounter the similarity between the objects in the full dimensional space is often invalid because it contains different types of data. The process of grouping into high dimensional data into clusters is not accurate and perhaps not up to the level of expectation when the dimension of the dataset is high. It is now focusing tremendous attention towards research and development. The performance issues of the data clustering in high dimensional data it is necessary to study issues like dimensionality reduction, redundancy elimination, subspace clustering, co-clustering and data labeling for clusters are to analyzed and improved. In this paper, we presented a brief comparison of the existing algorithms that were mainly focusing at clustering on high dimensional data

    Non-parametric Methods for Correlation Analysis in Multivariate Data with Applications in Data Mining

    Get PDF
    In this thesis, we develop novel methods for correlation analysis in multivariate data, with a special focus on mining correlated subspaces. Our methods handle major open challenges arisen when combining correlation analysis with subspace mining. Besides traditional correlation analysis, we explore interaction-preserving discretization of multivariate data and causality analysis. We conduct experiments on a variety of real-world data sets. The results validate the benefits of our methods
    • …
    corecore