33 research outputs found

    Biometric presentation attack detection: beyond the visible spectrum

    Full text link
    The increased need for unattended authentication in multiple scenarios has motivated a wide deployment of biometric systems in the last few years. This has in turn led to the disclosure of security concerns specifically related to biometric systems. Among them, presentation attacks (PAs, i.e., attempts to log into the system with a fake biometric characteristic or presentation attack instrument) pose a severe threat to the security of the system: any person could eventually fabricate or order a gummy finger or face mask to impersonate someone else. In this context, we present a novel fingerprint presentation attack detection (PAD) scheme based on i) a new capture device able to acquire images within the short wave infrared (SWIR) spectrum, and i i) an in-depth analysis of several state-of-theart techniques based on both handcrafted and deep learning features. The approach is evaluated on a database comprising over 4700 samples, stemming from 562 different subjects and 35 different presentation attack instrument (PAI) species. The results show the soundness of the proposed approach with a detection equal error rate (D-EER) as low as 1.35% even in a realistic scenario where five different PAI species are considered only for testing purposes (i.e., unknown attacks

    Machine Learning Techniques and Optical Systems for Iris Recognition from Distant Viewpoints

    Get PDF
    Vorhergehende Studien konnten zeigen, dass es im Prinzip möglich ist die Methode der Iriserkennung als biometrisches Merkmal zur Identifikation von Fahrern zu nutzen. Die vorliegende Arbeit basiert auf den Resultaten von [35], welche ebenfalls als Ausgangspunkt dienten und teilweise wiederverwendet wurden. Das Ziel dieser Dissertation war es, die Iriserkennung in einem automotiven Umfeld zu etablieren. Das einzigartige Muster der Iris, welches sich im Laufe der Zeit nicht verändert, ist der Grund, warum die Methode der Iriserkennung eine der robustesten biometrischen Erkennungsmethoden darstellt. Um eine Datenbasis für die Leistungsfähigkeit der entwickelten Lösung zu schaffen, wurde eine automotive Kamera benutzt, die mit passenden NIR-LEDs vervollständigt wurde, weil Iriserkennung am Besten im nahinfraroten Bereich (NIR) durchgeführt wird. Da es nicht immer möglich ist, die aufgenommenen Bilder direkt weiter zu verabeiten, werden zu Beginn einige Techniken zur Vorverarbeitung diskutiert. Diese verfolgen sowohl das Ziel die Qualität der Bilder zu erhöhen, als auch sicher zu stellen, dass lediglich Bilder mit einer akzeptablen Qualität verarbeitet werden. Um die Iris zu segmentieren wurden drei verschiedene Algorithmen implementiert. Dabei wurde auch eine neu entwickelte Methode zur Segmentierung in der polaren Repräsentierung eingeführt. Zusätzlich können die drei Techniken von einem "Snake Algorithmus", einer aktiven Kontur Methode, unterstützt werden. Für die Entfernung der Augenlider und Wimpern aus dem segmentierten Bereich werden vier Ansätze präsentiert. Um abzusichern, dass keine Segmentierungsfehler unerkannt bleiben, sind zwei Optionen eines Segmentierungsqualitätschecks angegeben. Nach der Normalisierung mittels "Rubber Sheet Model" werden die Merkmale der Iris extrahiert. Zu diesem Zweck werden die Ergebnisse zweier Gabor Filter verglichen. Der Schlüssel zu erfolgreicher Iriserkennung ist ein Test der statistischen Unabhängigkeit. Dabei dient die Hamming Distanz als Maß für die Unterschiedlichkeit zwischen der Phaseninformation zweier Muster. Die besten Resultate für die benutzte Datenbasis werden erreicht, indem die Bilder zunächst einer Schärfeprüfung unterzogen werden, bevor die Iris mittels der neu eingeführten Segmentierung in der polaren Repräsentierung lokalisiert wird und die Merkmale mit einem 2D-Gabor Filter extrahiert werden. Die zweite biometrische Methode, die in dieser Arbeit betrachtet wird, benutzt die Merkmale im Bereich der die Iris umgibt (periokular) zur Identifikation. Daher wurden mehrere Techniken für die Extraktion von Merkmalen und deren Klassifikation miteinander verglichen. Die Erkennungsleistung der Iriserkennung und der periokularen Erkennung, sowie die Fusion der beiden Methoden werden mittels Quervergleichen der aufgenommenen Datenbank gemessen und übertreffen dabei deutlich die Ausgangswerte aus [35]. Da es immer nötig ist biometrische Systeme gegen Manipulation zu schützen, wird zum Abschluss eine Technik vorgestellt, die es erlaubt, Betrugsversuche mittels eines Ausdrucks zu erkennen. Die Ergebnisse der vorliegenden Arbeit zeigen, dass es zukünftig möglich ist biometrische Merkmale anstelle von Autoschlüsseln einzusetzen. Auch wegen dieses großen Erfolges wurden die Ergebnisse bereits auf der Consumer Electronics Show (CES) im Jahr 2018 in Las Vegas vorgestellt

    Learning Efficient Deep Feature Extraction For Mobile Ocular Biometrics

    Get PDF
    Title from PDF of title page viewed March 4, 2021Dissertation advisors: Reza Derakhshani and Cory BeardVitaIncludes bibliographical references (page 137-149)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2020Ocular biometrics uses physical traits from eye regions such as iris, conjunctival vasculature, and periocular for recognizing the person. Ocular biometrics has gained popularity amongst research and industry alike for its identification capabilities, security, and simplicity in the acquisition, even using a mobile phone's selfie camera. With the rapid advancement in hardware and deep learning technologies, better performances have been obtained using Convolutional Neural Networks(CNN) for feature extraction and person recognition. Most of the early works proposed using large CNNs for ocular recognition in subject-dependent evaluation, where the subjects overlap between the training and testing set. This is difficult to scale for the large population as the CNN model needs to be re-trained every time a new subject is enrolled in the database. Also, many of the proposed CNN models are large, which renders them memory intensive and computationally costly to deploy on a mobile device. In this work, we propose CNN based robust subject-independent feature extraction for ocular biometric recognition, which is memory and computation efficient. We evaluated our proposed method on various ocular biometric datasets in the subject-independent, cross-dataset, and cross-illumination protocols.Introduction -- Previous Work -- Calculating CNN Models Computational Efficiency -- Case Study of Deep Learning Models in Ocular Biometrics -- OcularNet Model -- OcularNet-v2: Self-learned ROI detection with deep features -- LOD-V: Large Ocular Biometrics Dataset in Visible Spectrum -- Conclusion and Future Work -- Appendix A. Supplementary Materials for Chapter 4 -- Appendix B. Supplementary Materials for Chapter 5 -- Appendix C.Supplementary Materials for Chapter 6 -- Appendix D. Supplementary Materials for Chapter 7xxii, 150 page
    corecore