691 research outputs found

    Optimizing search user interfaces and interactions within professional social networks

    Get PDF
    Professional social networks (PSNs) play the key role in the online social media ecosystem, generate hundreds of terabytes of new data per day, and connect millions of people. To help users cope with the scale and influx of new information, PSNs provide search functionality. However, most of the search engines within PSNs today still provide only keyword queries, basic faceted search capabilities, and uninformative query-biased snippets overlooking the structured and interlinked nature of PSN entities. This results in siloed information, inefficient results presentation, and suboptimal search user experience (UX). In this thesis, we reconsider and comprehensively study input, control, and presentation elements of the search user interface (SUI) to enable more effective and efficient search within PSNs. Specifically, we demonstrate that: (1) named entity queries (NEQs) and structured queries (SQs) complement each other helping PSN users search for people and explore the PSN social graph beyond the first degree; (2) relevance-aware filtering saves users' efforts when they sort jobs, status updates, and people by an attribute value rather than by relevance; (3) extended informative structured snippets increase job search effectiveness and efficiency by leveraging human intelligence and exposing the most critical information about jobs right on a search engine result page (SERP); and (4) non-redundant delta snippets, which different from traditional query-biased snippets show on a SERP information relevant but complementary to the query, are more favored by users performing entity (e.g. people) search, lead to faster task completion times and better search outcomes. Thus, by modeling the structured and interlinked nature of PSN entities, we can optimize the query-refine-view interaction loop, facilitate serendipitous network exploration, and increase search utility. We believe that the insights, algorithms, and recommendations presented in this thesis will serve the next generation designers of SUIs within and beyond PSNs and shape the (structured) search landscape of the future

    Post Processing Recommender Systems with Knowledge Graphs for Recency, Popularity, and Diversity of Explanations

    Get PDF
    Existing explainable recommender systems have mainly modeled relationships between recommended and already experienced products, and shaped explanation types accordingly (e.g., movie "x"starred by actress "y"recommended to a user because that user watched other movies with "y"as an actress). However, none of these systems has investigated the extent to which properties of a single explanation (e.g., the recency of interaction with that actress) and of a group of explanations for a recommended list (e.g., the diversity of the explanation types) can influence the perceived explaination quality. In this paper, we conceptualized three novel properties that model the quality of the explanations (linking interaction recency, shared entity popularity, and explanation type diversity) and proposed re-ranking approaches able to optimize for these properties. Experiments on two public data sets showed that our approaches can increase explanation quality according to the proposed properties, fairly across demographic groups, while preserving recommendation utility. The source code and data are available at https: //github.com/giacoballoccu/explanation-quality-recsys

    Database Optimization Aspects for Information Retrieval

    Get PDF
    There is a growing need for systems that can process queries, combining both structured data and text. One way to provide such functionality is to integrate information retrieval (IR) techniques in a database management system (DBMS). However, both IR and database research have been separate research fields for decades, resulting in different - even conflicting - approaches to data management. Each DBMS has a component called a "query optimizer", which plays a crucial role in the efficiency and flexibility of the system. So, for successful integration the IR techniques and data structures, as well as the DBMS query optimizer, should be adapted to enable mutual cooperation. The author concentrates on top-N queries - a common class of IR queries. An IR top-N query asks for the N best documents given a set of keywords. The author proposes processing the data in batches as a compromise between IR and DBMS query processing. Experiments with this technique show that porting IR optimization techniques is (still) not a promising option due to the additional administrative overhead. Two new mathematical models are introduced to eliminate this overhead: a model that predicts selectivity, which is a crucial factor in the execution costs, and a model that predicts the quality of the top-N

    On efficient temporal subgraph query processing

    Get PDF

    Emergent relational schemas for RDF

    Get PDF

    Why-Query Support in Graph Databases

    Get PDF
    In the last few decades, database management systems became powerful tools for storing large amount of data and executing complex queries over them. In addition to extended functionality, novel types of databases appear like triple stores, distributed databases, etc. Graph databases implementing the property-graph model belong to this development branch and provide a new way for storing and processing data in the form of a graph with nodes representing some entities and edges describing connections between them. This consideration makes them suitable for keeping data without a rigid schema for use cases like social-network processing or data integration. In addition to a flexible storage, graph databases provide new querying possibilities in the form of path queries, detection of connected components, pattern matching, etc. However, the schema flexibility and graph queries come with additional costs. With limited knowledge about data and little experience in constructing the complex queries, users can create such ones, which deliver unexpected results. Forced to debug queries manually and overwhelmed by the amount of query constraints, users can get frustrated by using graph databases. What is really needed, is to improve usability of graph databases by providing debugging and explaining functionality for such situations. We have to assist users in the discovery of what were the reasons of unexpected results and what can be done in order to fix them. The unexpectedness of result sets can be expressed in terms of their size or content. In the first case, users have to solve the empty-answer, too-many-, or too-few-answers problems. In the second case, users care about the result content and miss some expected answers or wonder about presence of some unexpected ones. Considering the typical problems of receiving no or too many results by querying graph databases, in this thesis we focus on investigating the problems of the first group, whose solutions are usually represented by why-empty, why-so-few, and why-so-many queries. Our objective is to extend graph databases with debugging functionality in the form of why-queries for unexpected query results on the example of pattern matching queries, which are one of general graph-query types. We present a comprehensive analysis of existing debugging tools in the state-of-the-art research and identify their common properties. From them, we formulate the following features of why-queries, which we discuss in this thesis, namely: holistic support of different cardinality-based problems, explanation of unexpected results and query reformulation, comprehensive analysis of explanations, and non-intrusive user integration. To support different cardinality-based problems, we develop methods for explaining no, too few, and too many results. To cover different kinds of explanations, we present two types: subgraph- and modification-based explanations. The first type identifies the reasons of unexpectedness in terms of query subgraphs and delivers differential graphs as answers. The second one reformulates queries in such a way that they produce better results. Considering graph queries to be complex structures with multiple constraints, we investigate different ways of generating explanations starting from the most general one that considers only a query topology through coarse-grained rewriting up to fine-grained modification that allows fine changes of predicates and topology. To provide a comprehensive analysis of explanations, we propose to compare them on three levels including a syntactic description, a content, and a size of a result set. In order to deliver user-aware explanations, we discuss two models for non-intrusive user integration in the generation process. With the techniques proposed in this thesis, we are able to provide fundamentals for debugging of pattern-matching queries, which deliver no, too few, or too many results, in graph databases implementing the property-graph model

    Handling Tradeoffs between Performance and Query-Result Quality in Data Stream Processing

    Get PDF
    Data streams in the form of potentially unbounded sequences of tuples arise naturally in a large variety of domains including finance markets, sensor networks, social media, and network traffic management. The increasing number of applications that require processing data streams with high throughput and low latency have promoted the development of data stream processing systems (DSPS). A DSPS processes data streams with continuous queries, which are issued once and return query results to users continuously as new tuples arrive. For stream-based applications, both the query-execution performance (in terms of, e.g., throughput and end-to-end latency) and the quality of produced query results (in terms of, e.g., accuracy and completeness) are important. However, a DSPS often needs to make tradeoffs between these two requirements, either because of the data imperfection within the streams, or because of the limited computation capacity of the DSPS itself. Performance versus result-quality tradeoffs caused by data imperfection are inevitable, because the quality of the incoming data is beyond the control of a DSPS, whereas tradeoffs caused by system limitations can be alleviated—even erased—by enhancing the DSPS itself. This dissertation seeks to advance the state of the art on handling the performance versus result-quality tradeoffs in data stream processing caused by the above two aspects of reasons. For tradeoffs caused by data imperfection, this dissertation focuses on the typical data-imperfection problem of stream disorder and proposes the concept of quality-driven disorder handling (QDDH). QDDH enables a DSPS to make flexible and user-configurable tradeoffs between the end-to-end latency and the query-result quality when dealing with stream disorder. Moreover, compared to existing disorder handling approaches, QDDH can significantly reduce the end-to-end latency, and at the same time provide users with desired query-result quality. In this dissertation, a generic buffer-based QDDH framework and three instantiations of the generic framework for distinct query types are presented. For tradeoffs caused by system limitations, this dissertation proposes a system-enhancement approach that combines the row-oriented and the column-oriented data layout and processing techniques in data stream processing to improve the throughput. To fully exploit the potential of such hybrid execution of continuous queries, a static, cost-based query optimizer is introduced. The optimizer works at the operator level and takes the unique property of execution plans of continuous queries—feasibility—into account

    Continuously Providing Approximate Results under Limited Resources: Load Shedding and Spilling in XML Streams

    Get PDF
    Because of the high volume and unpredictable arrival rates, stream processing systems may not always be able to keep up with the input data streams, resulting in buffer overflow and uncontrolled loss of data. To continuously supply online results, two alternate solutions to tackle this problem of unpredictable failures of such overloaded systems can be identified. One technique, called load shedding, drops some fractions of data from the input stream to reduce the memory and CPU requirements of the workload. However, dropping some portions of the input data means that the accuracy of the output is reduced since some data is lost. To produce eventually complete results, the second technique, called data spilling, pushes some fractions of data to persistent storage temporarily when the processing speed cannot keep up with the arrival rate. The processing of the disk resident data is then postponed until a later time when system resources become available. This dissertation explores these load reduction technologies in the context of XML stream systems. Load shedding in the specific context of XML streams poses several unique opportunities and challenges. Since XML data is hierarchical, subelements, extracted from different positions of the XML tree structure, may vary in their importance. Further, dropping different subelements may vary in their savings of storage and computation. Hence, unlike prior work in the literature that drops data completely or not at all, in this dissertation we introduce the notion of structure-oriented load shedding, meaning selectively some XML subelements are shed from the possibly complex XML objects in the XML stream. First we develop a preference model that enables users to specify the relative importance of preserving different subelements within the XML result structure. This transforms shedding into the problem of rewriting the user query into shed queries that return approximate answers with their utility as measured by the user preference model. Our optimizer finds the appropriate shed queries to maximize the output utility driven by our structure-based preference model under the limitation of available computation resources. The experimental results demonstrate that our proposed XML-specific shedding solution consistently achieves higher utility results compared to the existing relational shedding techniques. Second, we introduces structure-based spilling, a spilling technique customized for XML streams by considering the spilling of partial substructures of possibly complex XML elements. Several new challenges caused by structure-based spilling are addressed. When a path is spilled, multiple other paths may be affected. We categorize varying types of spilling side effects on the query caused by spilling. How to execute the reduced query to produce the correct runtime output is also studied. Three optimization strategies are developed to select the reduced query that maximizes the output quality. We also examine the clean-up stage to guarantee that an entire result set is eventually generated by producing supplementary results to complement the partial results output earlier. The experimental study demonstrates that our proposed solutions consistently achieve higher quality results compared to the state-of-the-art techniques. Third, we design an integrated framework that combines both shedding and spilling policies into one comprehensive methodology. Decisions on the choice of whether to shed or spill data may be affected by the application needs and data arrival patterns. For some input data, it may be worth to flush it to disk if a delayed output of its result will be important, while other data would best directly dropped from the system given that a delayed delivery of these results would no longer be meaningful to the application. Therefore we need sophisticated technologies capable of deploying both shedding and spilling techniques within one integrated strategy with the ability to deliver the most appropriate decision customers need for each specific circumstance. We propose a novel flexible framework for structure-based shed and spill approaches, applicable in any XML stream system. We propose a solution space that represents all the shed and spill candidates. An age-based quality model is proposed for evaluating the output quality for different reduced query and supplementary query pairs. We also propose a family of four optimization strategies, OptF, OptSmart, HiX and Fex. OptF and OptSmart are both guaranteed to identify an optimal solution of reduced and supplementary query pair, with OptSmart exhibiting significantly less overhead than OptF. HiX and Fex use heuristic-based approaches that are much more efficient than OptF and OptSmart
    • …
    corecore