4,115 research outputs found

    Continuous Learning of the Structure of Bayesian Networks: A Mapping Study

    Get PDF
    Bayesian networks can be built based on knowledge, data, or both. Independent of the source of information used to build the model, inaccuracies might occur or the application domain might change. Therefore, there is a need to continuously improve the model during its usage. As new data are collected, algorithms to continuously incorporate the updated knowledge can play an essential role in this process. In regard to the continuous learning of the Bayesian network’s structure, the current solutions are based on its structural refinement or adaptation. Recent researchers aim to reduce complexity and memory usage, allowing to solve complex and large-scale practical problems. This study aims to identify and evaluate solutions for the continuous learning of the Bayesian network’s structures, as well as to outline related future research directions. Our attention remains on the structures because the accurate parameters are completely useless if the structure is not representative

    Evidence combination for incremental decision-making processes

    Get PDF
    The establishment of a medical diagnosis is an incremental process highly fraught with uncertainty. At each step of this painstaking process, it may be beneficial to be able to quantify the uncertainty linked to the diagnosis and steadily update the uncertainty estimation using available sources of information, for example user feedback, as they become available. Using the example of medical data in general and EEG data in particular, we show what types of evidence can affect discrete variables such as a medical diagnosis and build a simple and computationally efficient evidence combination model based on the Dempster-Shafer theory

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version
    corecore