5,168 research outputs found

    Algorithms for Verification of Analog and Mixed-Signal Integrated Circuits

    Get PDF
    Over the past few decades, the tremendous growth in the complexity of analog and mixed-signal (AMS) systems has posed great challenges to AMS verification, resulting in a rapidly growing verification gap. Existing formal methods provide appealing completeness and reliability, yet they suffer from their limited efficiency and scalability. Data oriented machine learning based methods offer efficient and scalable solutions but do not guarantee completeness or full coverage. Additionally, the trend towards shorter time to market for AMS chips urges the development of efficient verification algorithms to accelerate with the joint design and testing phases. This dissertation envisions a hierarchical and hybrid AMS verification framework by consolidating assorted algorithms to embrace efficiency, scalability and completeness in a statistical sense. Leveraging diverse advantages from various verification techniques, this dissertation develops algorithms in different categories. In the context of formal methods, this dissertation proposes a generic and comprehensive model abstraction paradigm to model AMS content with a unifying analog representation. Moreover, an algorithm is proposed to parallelize reachability analysis by decomposing AMS systems into subsystems with lower complexity, and dividing the circuit's reachable state space exploration, which is formulated as a satisfiability problem, into subproblems with a reduced number of constraints. The proposed modeling method and the hierarchical parallelization enhance the efficiency and scalability of reachability analysis for AMS verification. On the subject of learning based method, the dissertation proposes to convert the verification problem into a binary classification problem solved using support vector machine (SVM) based learning algorithms. To reduce the need of simulations for training sample collection, an active learning strategy based on probabilistic version space reduction is proposed to perform adaptive sampling. An expansion of the active learning strategy for the purpose of conservative prediction is leveraged to minimize the occurrence of false negatives. Moreover, another learning based method is proposed to characterize AMS systems with a sparse Bayesian learning regression model. An implicit feature weighting mechanism based on the kernel method is embedded in the Bayesian learning model for concurrent quantification of influence of circuit parameters on the targeted specification, which can be efficiently solved in an iterative method similar to the expectation maximization (EM) algorithm. Besides, the achieved sparse parameter weighting offers favorable assistance to design analysis and test optimization

    Hybrid Verification for Analog and Mixed-signal Circuits

    Get PDF
    With increasing design complexity and reliability requirements, analog and mixedsignal (AMS) verification manifests itself as a key bottleneck. While formal methods and machine learning have been proposed for AMS verification, these two types of techniques suffer from their own limitations, with the former being specifically limited by scalability and the latter by inherent errors in learning-based models. We present a new direction in AMS verification by proposing a hybrid formal/machinelearning- based verification technique (HFMV) to combine the best of the two worlds. HFMV builds formalism on the top of a machine learning model to verify AMS circuits efficiently while meeting a user-specified confidence level. Guided by formal checks, HFMV intelligently explores the high-dimensional parameter space of a given design by iteratively improving the machine learning model. As a result, it leads to accurate failure prediction in the case of a failing circuit or a reliable pass decision in the case of a good circuit. Our experimental results demonstrate that the proposed HFMV approach is capable of identifying hard-to-find failures which are completely missed by a huge number of random simulation samples while significantly cutting down training sample size and verification cycle time

    Hybrid Verification for Analog and Mixed-signal Circuits

    Get PDF
    With increasing design complexity and reliability requirements, analog and mixedsignal (AMS) verification manifests itself as a key bottleneck. While formal methods and machine learning have been proposed for AMS verification, these two types of techniques suffer from their own limitations, with the former being specifically limited by scalability and the latter by inherent errors in learning-based models. We present a new direction in AMS verification by proposing a hybrid formal/machinelearning- based verification technique (HFMV) to combine the best of the two worlds. HFMV builds formalism on the top of a machine learning model to verify AMS circuits efficiently while meeting a user-specified confidence level. Guided by formal checks, HFMV intelligently explores the high-dimensional parameter space of a given design by iteratively improving the machine learning model. As a result, it leads to accurate failure prediction in the case of a failing circuit or a reliable pass decision in the case of a good circuit. Our experimental results demonstrate that the proposed HFMV approach is capable of identifying hard-to-find failures which are completely missed by a huge number of random simulation samples while significantly cutting down training sample size and verification cycle time

    Characterization and Design of Analog Integrated Circuits Exploiting Analog Platforms

    Get PDF
    Universal Mobile Telecommunication System (UMTS) front end design is challenging because of the need to optimize power while satisfying a very high dynamic range requirement. At the same time, designing analog circuits for automotive applications is very difficult because of the wide temperature range (from -40 to 125 degrees at least) they must tolerate. Dealing with this design problems at the transistor level does not allow to explore efficiently the design space, while using behavioral models does not allow to take into consideration important second-order effects. We present an extension of the platform-based design methodology originally developed for digital systems to the analog domain to conjugate the need of higher levels of abstraction to deal with complexity as well as the one of capturing enough of the actual circuit-level characteristics to deal with second order effects. This methodology is based on the concept of Analog Platform and is very useful both to characterize an analog circuit and to perform a system level optimization. We show how this methodology applied to the UMTS front-end design yields power savings as large as 47% versus an original hand optimized design. Besides, we give details on how to design an RC oscillator for automotive applications and to get its main performances at the aim of characterizing it

    Emerging Security Threats in Modern Digital Computing Systems: A Power Management Perspective

    Get PDF
    Design of computing systems — from pocket-sized smart phones to massive cloud based data-centers — have one common daunting challenge : minimizing the power consumption. In this effort, power management sector is undergoing a rapid and profound transformation to promote clean and energy proportional computing. At the hardware end of system design, there is proliferation of specialized, feature rich and complex power management hardware components. Similarly, in the software design layer complex power management suites are growing rapidly. Concurrent to this development, there has been an upsurge in the integration of third-party components to counter the pressures of shorter time-to-market. These trends collectively raise serious concerns about trust and security of power management solutions. In recent times, problems such as overheating, performance degradation and poor battery life, have dogged the mobile devices market, including the infamous recall of Samsung Note 7. Power outage in the data-center of a major airline left innumerable passengers stranded, with thousands of canceled flights costing over 100 million dollars. This research examines whether such events of unintentional reliability failure, can be replicated using targeted attacks by exploiting the security loopholes in the complex power management infrastructure of a computing system. At its core, this research answers an imminent research question: How can system designers ensure secure and reliable operation of third-party power management units? Specifically, this work investigates possible attack vectors, and novel non-invasive detection and defense mechanisms to safeguard system against malicious power attacks. By a joint exploration of the threat model and techniques to seamlessly detect and protect against power attacks, this project can have a lasting impact, by enabling the design of secure and cost-effective next generation hardware platforms

    Automatic Pain Assessment by Learning from Multiple Biopotentials

    Get PDF
    Kivun täsmällinen arviointi on tärkeää kivunhallinnassa, erityisesti sairaan- hoitoa vaativille ipupotilaille. Kipu on subjektiivista, sillä se ei ole pelkästään aistituntemus, vaan siihen saattaa liittyä myös tunnekokemuksia. Tällöin itsearviointiin perustuvat kipuasteikot ovat tärkein työkalu, niin auan kun potilas pystyy kokemuksensa arvioimaan. Arviointi on kuitenkin haasteellista potilailla, jotka eivät itse pysty kertomaan kivustaan. Kliinisessä hoito- työssä kipua pyritään objektiivisesti arvioimaan esimerkiksi havainnoimalla fysiologisia muuttujia kuten sykettä ja käyttäytymistä esimerkiksi potilaan kasvonilmeiden perusteella. Tutkimuksen päätavoitteena on automatisoida arviointiprosessi hyödyntämällä koneoppimismenetelmiä yhdessä biosignaalien prosessointnin kanssa. Tavoitteen saavuttamiseksi mitattiin autonomista keskushermoston toimintaa kuvastavia biopotentiaaleja: sydänsähkökäyrää, galvaanista ihoreaktiota ja kasvolihasliikkeitä mittaavaa lihassähkökäyrää. Mittaukset tehtiin terveillä vapaaehtoisilla, joille aiheutettiin kokeellista kipuärsykettä. Järestelmän kehittämiseen tarvittavaa tietokantaa varten rakennettiin biopotentiaaleja keräävä Internet of Things -pohjainen tallennusjärjestelmä. Koostetun tietokannan avulla kehitettiin biosignaaleille prosessointimenetelmä jatku- vaan kivun arviointiin. Signaaleista eroteltiin piirteitä sekuntitasoon mukautetuilla aikaikkunoilla. Piirteet visualisoitiin ja tarkasteltiin eri luokittelijoilla kivun ja kiputason tunnistamiseksi. Parhailla luokittelumenetelmillä saavutettiin kivuntunnistukseen 90% herkkyyskyky (sensitivity) ja 84% erottelukyky (specificity) ja kivun voimakkuuden arviointiin 62,5% tarkkuus (accuracy). Tulokset vahvistavat kyseisen käsittelytavan käyttökelpoisuuden erityis- esti tunnistettaessa kipua yksittäisessä arviointi-ikkunassa. Tutkimus vahvistaa biopotentiaalien avulla kehitettävän automatisoidun kivun arvioinnin toteutettavuuden kokeellisella kivulla, rohkaisten etenemään todellisen kivun tutkimiseen samoilla menetelmillä. Menetelmää kehitettäessä suoritettiin lisäksi vertailua ja yhteenvetoa automaattiseen kivuntunnistukseen kehitettyjen eri tutkimusten välisistä samankaltaisuuksista ja eroista. Tarkastelussa löytyi signaalien eroavaisuuksien lisäksi tutkimusmuotojen aiheuttamaa eroa arviointitavoitteisiin, mikä hankaloitti tutkimusten vertailua. Lisäksi pohdit- tiin mitkä perinteisten prosessointitapojen osiot rajoittavat tai edistävät ennustekykyä ja miten, sekä tuoko optimointi läpimurtoa järjestelmän näkökulmasta.Accurate pain assessment plays an important role in proper pain management, especially among hospitalized people experience acute pain. Pain is subjective in nature which is not only a sensory feeling but could also combine affective factors. Therefore self-report pain scales are the main assessment tools as long as patients are able to self-report. However, it remains a challenge to assess the pain from the patients who cannot self-report. In clinical practice, physiological parameters like heart rate and pain behaviors including facial expressions are observed as empirical references to infer pain objectively. The main aim of this study is to automate such process by leveraging machine learning methods and biosignal processing. To achieve this goal, biopotentials reflecting autonomic nervous system activities including electrocardiogram and galvanic skin response, and facial expressions measured with facial electromyograms were recorded from healthy volunteers undergoing experimental pain stimulus. IoT-enabled biopotential acquisition systems were developed to build the database aiming at providing compact and wearable solutions. Using the database, a biosignal processing flow was developed for continuous pain estimation. Signal features were extracted with customized time window lengths and updated every second. The extracted features were visualized and fed into multiple classifiers trained to estimate the presence of pain and pain intensity separately. Among the tested classifiers, the best pain presence estimating sensitivity achieved was 90% (specificity 84%) and the best pain intensity estimation accuracy achieved was 62.5%. The results show the validity of the proposed processing flow, especially in pain presence estimation at window level. This study adds one more piece of evidence on the feasibility of developing an automatic pain assessment tool from biopotentials, thus providing the confidence to move forward to real pain cases. In addition to the method development, the similarities and differences between automatic pain assessment studies were compared and summarized. It was found that in addition to the diversity of signals, the estimation goals also differed as a result of different study designs which made cross dataset comparison challenging. We also tried to discuss which parts in the classical processing flow would limit or boost the prediction performance and whether optimization can bring a breakthrough from the system’s perspective

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    Technology Directions for the 21st Century

    Get PDF
    The Office of Space Communications (OSC) is tasked by NASA to conduct a planning process to meet NASA's science mission and other communications and data processing requirements. A set of technology trend studies was undertaken by Science Applications International Corporation (SAIC) for OSC to identify quantitative data that can be used to predict performance of electronic equipment in the future to assist in the planning process. Only commercially available, off-the-shelf technology was included. For each technology area considered, the current state of the technology is discussed, future applications that could benefit from use of the technology are identified, and likely future developments of the technology are described. The impact of each technology area on NASA operations is presented together with a discussion of the feasibility and risk associated with its development. An approximate timeline is given for the next 15 to 25 years to indicate the anticipated evolution of capabilities within each of the technology areas considered. This volume contains four chapters: one each on technology trends for database systems, computer software, neural and fuzzy systems, and artificial intelligence. The principal study results are summarized at the beginning of each chapter

    FPGA implementation of a LSTM Neural Network

    Get PDF
    Este trabalho pretende fazer uma implementação customizada, em Hardware, duma Rede Neuronal Long Short-Term Memory. O modelo python, assim como a descrição Verilog, e síntese RTL, encontram-se terminadas. Falta apenas fazer o benchmarking e a integração de um sistema de aprendizagem
    corecore