378 research outputs found

    Benefits of coordinating distribution network reconfiguration with distributed generation and energy storage systems

    Get PDF
    Avaliar a importância da reconfiguração numa rede eléctrica de distribuição, assim como a integração (localização e tamanho) e os impactos que a produção distribuída pode ter na rede e a localização e tamanho de sistemas de armazenamento de energia para contrapor o aumento da penetração na rede de produção distribuída que traz consigo imprevisibilidade na produção de energia. A reconfiguração e os sistemas de armazenamento de energia têm como grande finalidade ajudar a integrar na rede cada vez mais produção distribuída de origem renovável

    A Model-Based Holistic Power Management Framework: A Study on Shipboard Power Systems for Navy Applications

    Get PDF
    The recent development of Integrated Power Systems (IPS) for shipboard application has opened the horizon to introduce new technologies that address the increasing power demand along with the associated performance specifications. Similarly, the Shipboard Power System (SPS) features system components with multiple dynamic characteristics and require stringent regulations, leveraging a challenge for an efficient system level management. The shipboard power management needs to support the survivability, reliability, autonomy, and economy as the key features for design consideration. To address these multiple issues for an increasing system load and to embrace future technologies, an autonomic power management framework is required to maintain the system level objectives. To address the lack of the efficient management scheme, a generic model-based holistic power management framework is developed for naval SPS applications. The relationship between the system parameters are introduced in the form of models to be used by the model-based predictive controller for achieving the various power management goals. An intelligent diagnostic support system is developed to support the decision making capabilities of the main framework. Naïve Bayes’ theorem is used to classify the status of SPS to help dispatch the appropriate controls. A voltage control module is developed and implemented on a real-time test bed to verify the computation time. Variants of the limited look-ahead controls (LLC) are used throughout the dissertation to support the management framework design. Additionally, the ARIMA prediction is embedded in the approach to forecast the environmental variables in the system design. The developed generic framework binds the multiple functionalities in the form of overall system modules. Finally, the dissertation develops the distributed controller using the Interaction Balance Principle to solve the interconnected subsystem optimization problem. The LLC approach is used at the local level, and the conjugate gradient method coordinates all the lower level controllers to achieve the overall optimal solution. This novel approach provides better computing performance, more flexibility in design, and improved fault handling. The case-study demonstrates the applicability of the method and compares with the centralized approach. In addition, several measures to characterize the performance of the distributed controls approach are studied

    Optimisation, Optimal Control and Nonlinear Dynamics in Electrical Power, Energy Storage and Renewable Energy Systems

    Get PDF
    The electrical power system is undergoing a revolution enabled by advances in telecommunications, computer hardware and software, measurement, metering systems, IoT, and power electronics. Furthermore, the increasing integration of intermittent renewable energy sources, energy storage devices, and electric vehicles and the drive for energy efficiency have pushed power systems to modernise and adopt new technologies. The resulting smart grid is characterised, in part, by a bi-directional flow of energy and information. The evolution of the power grid, as well as its interconnection with energy storage systems and renewable energy sources, has created new opportunities for optimising not only their techno-economic aspects at the planning stages but also their control and operation. However, new challenges emerge in the optimization of these systems due to their complexity and nonlinear dynamic behaviour as well as the uncertainties involved.This volume is a selection of 20 papers carefully made by the editors from the MDPI topic “Optimisation, Optimal Control and Nonlinear Dynamics in Electrical Power, Energy Storage and Renewable Energy Systems”, which was closed in April 2022. The selected papers address the above challenges and exemplify the significant benefits that optimisation and nonlinear control techniques can bring to modern power and energy systems

    Smart Energy Management for Smart Grids

    Get PDF
    This book is a contribution from the authors, to share solutions for a better and sustainable power grid. Renewable energy, smart grid security and smart energy management are the main topics discussed in this book

    Innovation in Energy Systems

    Get PDF
    It has been a little over a century since the inception of interconnected networks and little has changed in the way that they are operated. Demand-supply balance methods, protection schemes, business models for electric power companies, and future development considerations have remained the same until very recently. Distributed generators, storage devices, and electric vehicles have become widespread and disrupted century-old bulk generation - bulk transmission operation. Distribution networks are no longer passive networks and now contribute to power generation. Old billing and energy trading schemes cannot accommodate this change and need revision. Furthermore, bidirectional power flow is an unprecedented phenomenon in distribution networks and traditional protection schemes require a thorough fix for proper operation. This book aims to cover new technologies, methods, and approaches developed to meet the needs of this changing field

    Study of Smart Grid Technology and Its Development in Indian Scenario

    Get PDF
    India is truculent to meet the electric power demands of a fast expanding economy. Restructuring of the power industry has only increased several challenges for the power system engineers. The proposed vision of introducing viable Smart Grid (SG) at various levels in the Indian power systems has recommended that an advanced automation mechanism needs to be adapted. Smart Grids are introduced to make the grid operation smarter and intelligent. Smart grid operations, upon appropriate deployment can open up new avenues and opportunities with significant financial implications. This work presents various Smart grid initiatives and implications in the context of power market evolution in India. Various examples of existing structures of automation in India are employed to underscore some of the views presented in this report. It also reviews the progress made in Smart grid technology research and development since its inception. Attempts are made to highlight the current and future issues involved for the development of Smart Grid technology for future demands in Indian perspective

    Real time adaptive relay settings for Microgrid protection verified using Hardware in Loop

    Get PDF
    Microgrids with penetration of renewables is imposing new challenges for system protection. Renewables are characterized with high source impedance which limit the short circuit current. The value of short-circuit current is limited due to converters used which limit the current to a maximum of 1.1 to 1.5 times maximum rated load current. This can result in faults during the islanded mode of microgrid to go unnoticed if the relay settings are not adapted to account for it. The presence of such uncleared faults in the microgrid can result in exposing it to overcurrent for a long time which can damage the equipment. One solution is to have different protection element pickup settings for different modes of operation. This report discusses the development of an algorithm to switch these settings upon microgrid state changes and test the algorithm using OPAL-RT hardware in loop real-time testing with SEL-351S relay as the hardware

    Multi Agent Systems

    Get PDF
    Research on multi-agent systems is enlarging our future technical capabilities as humans and as an intelligent society. During recent years many effective applications have been implemented and are part of our daily life. These applications have agent-based models and methods as an important ingredient. Markets, finance world, robotics, medical technology, social negotiation, video games, big-data science, etc. are some of the branches where the knowledge gained through multi-agent simulations is necessary and where new software engineering tools are continuously created and tested in order to reach an effective technology transfer to impact our lives. This book brings together researchers working in several fields that cover the techniques, the challenges and the applications of multi-agent systems in a wide variety of aspects related to learning algorithms for different devices such as vehicles, robots and drones, computational optimization to reach a more efficient energy distribution in power grids and the use of social networks and decision strategies applied to the smart learning and education environments in emergent countries. We hope that this book can be useful and become a guide or reference to an audience interested in the developments and applications of multi-agent systems

    Review of Low Voltage Load Forecasting: Methods, Applications, and Recommendations

    Full text link
    The increased digitalisation and monitoring of the energy system opens up numerous opportunities to decarbonise the energy system. Applications on low voltage, local networks, such as community energy markets and smart storage will facilitate decarbonisation, but they will require advanced control and management. Reliable forecasting will be a necessary component of many of these systems to anticipate key features and uncertainties. Despite this urgent need, there has not yet been an extensive investigation into the current state-of-the-art of low voltage level forecasts, other than at the smart meter level. This paper aims to provide a comprehensive overview of the landscape, current approaches, core applications, challenges and recommendations. Another aim of this paper is to facilitate the continued improvement and advancement in this area. To this end, the paper also surveys some of the most relevant and promising trends. It establishes an open, community-driven list of the known low voltage level open datasets to encourage further research and development.Comment: 37 pages, 6 figures, 2 tables, review pape
    corecore