1,105 research outputs found

    Anderson And Belnap's Minimal Positive Logic With Minimal Negation

    Get PDF
    Our question is: can we embed minimal negation in implicative logics weaker than I→? Previous results show how to define minimal negation in the positive fragment of the logic of relevance R and in contractionless intuitionistic logic. Is it possible to endow weaker positive logics with minimal negation? This paper prooves that minimal negation can be embedded in even such a weak system as Anderson and Belnap’s minimal positive logic

    Negation and Dichotomy

    Get PDF
    The present contribution might be regarded as a kind of defense of the common sense in logic. It is demonstrated that if the classical negation is interpreted as the minimal negation with n = 2 truth values, then deviant logics can be conceived as extension of the classical bivalent frame. Such classical apprehension of negation is possible in non- classical logics as well, if truth value is internalized and bivalence is replaced by bipartition

    A Galois connection between classical and intuitionistic logics. I: Syntax

    Full text link
    In a 1985 commentary to his collected works, Kolmogorov remarked that his 1932 paper "was written in hope that with time, the logic of solution of problems [i.e., intuitionistic logic] will become a permanent part of a [standard] course of logic. A unified logical apparatus was intended to be created, which would deal with objects of two types - propositions and problems." We construct such a formal system QHC, which is a conservative extension of both the intuitionistic predicate calculus QH and the classical predicate calculus QC. The only new connectives ? and ! of QHC induce a Galois connection (i.e., a pair of adjoint functors) between the Lindenbaum posets (i.e. the underlying posets of the Lindenbaum algebras) of QH and QC. Kolmogorov's double negation translation of propositions into problems extends to a retraction of QHC onto QH; whereas Goedel's provability translation of problems into modal propositions extends to a retraction of QHC onto its QC+(?!) fragment, identified with the modal logic QS4. The QH+(!?) fragment is an intuitionistic modal logic, whose modality !? is a strict lax modality in the sense of Aczel - and thus resembles the squash/bracket operation in intuitionistic type theories. The axioms of QHC attempt to give a fuller formalization (with respect to the axioms of intuitionistic logic) to the two best known contentual interpretations of intiuitionistic logic: Kolmogorov's problem interpretation (incorporating standard refinements by Heyting and Kreisel) and the proof interpretation by Orlov and Heyting (as clarified by G\"odel). While these two interpretations are often conflated, from the viewpoint of the axioms of QHC neither of them reduces to the other one, although they do overlap.Comment: 47 pages. The paper is rewritten in terms of a formal meta-logic (a simplified version of Isabelle's meta-logic

    Minimal Negation in the Ternary Relational Semantics

    Get PDF
    Minimal Negation is defined within the basic positive relevance logic in the relational ternary semantics: B+. Thus, by defining a number of subminimal negations in the B+ context, principles of weak negation are shown to be isolable. Complete ternary semantics are offered for minimal negation in B+. Certain forms of reductio are conjectured to be undefinable (in ternary frames) without extending the positive logic. Complete semantics for such kinds of reductio in a properly extended positive logic are offered

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later
    • …
    corecore