1,471 research outputs found

    Performance Analysis of Random Linear Network Coding in Two-Source Single-Relay Networks

    Get PDF
    This paper considers the multiple-access relay channel in a setting where two source nodes transmit packets to a destination node, both directly and via a relay node, over packet erasure channels. Intra-session network coding is used at the source nodes and inter-session network coding is employed at the relay node to combine the recovered source packets of both source nodes. In this work, we investigate the performance of the network-coded system in terms of the probability that the destination node will successfully recover the source packets of the two source nodes. We build our analysis on fundamental probability expressions for random matrices over finite fields and we derive upper bounds on the system performance for the case of systematic and non-systematic network coding. Simulation results show that the upper bounds are very tight and accurately predict the decoding probability at the destination node. Our analysis also exposes the clear benefits of systematic network coding at the source nodes compared to non-systematic transmission.Comment: Proc. ICC 2015, Workshop on Cooperative and Cognitive Mobile Networks (CoCoNet), to appea

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    The Three Node Wireless Network: Achievable Rates and Cooperation Strategies

    Full text link
    We consider a wireless network composed of three nodes and limited by the half-duplex and total power constraints. This formulation encompasses many of the special cases studied in the literature and allows for capturing the common features shared by them. Here, we focus on three special cases, namely 1) Relay Channel, 2) Multicast Channel, and 3) Conference Channel. These special cases are judicially chosen to reflect varying degrees of complexity while highlighting the common ground shared by the different variants of the three node wireless network. For the relay channel, we propose a new cooperation scheme that exploits the wireless feedback gain. This scheme combines the benefits of decode-and-forward and compress-and-forward strategies and avoids the idealistic feedback assumption adopted in earlier works. Our analysis of the achievable rate of this scheme reveals the diminishing feedback gain at both the low and high signal-to-noise ratio regimes. Inspired by the proposed feedback strategy, we identify a greedy cooperation framework applicable to both the multicast and conference channels. Our performance analysis reveals several nice properties of the proposed greedy approach and the central role of cooperative source-channel coding in exploiting the receiver side information in the wireless network setting. Our proofs for the cooperative multicast with side-information rely on novel nested and independent binning encoders along with a list decoder.Comment: 52 page

    Generalized Adaptive Network Coding Aided Successive Relaying Based Noncoherent Cooperation

    No full text
    A generalized adaptive network coding (GANC) scheme is conceived for a multi-user, multi-relay scenario, where the multiple users transmit independent information streams to a common destination with the aid of multiple relays. The proposed GANC scheme is developed from adaptive network coded cooperation (ANCC), which aims for a high flexibility in order to: 1) allow arbitrary channel coding schemes to serve as the cross-layer network coding regime; 2) provide any arbitrary trade-off between the throughput and reliability by adjusting the ratio of the source nodes and the cooperating relay nodes. Furthermore, we incorporate the proposed GANC scheme in a novel successive relaying aided network (SRAN) in order to recover the typical 50% half-duplex relaying-induced throughput loss. However, it is unrealistic to expect that in addition to carrying out all the relaying functions, the relays could additionally estimate the source-to-relay channels. Hence noncoherent detection is employed in order to obviate the power-hungry channel estimation. Finally, we intrinsically amalgamate our GANC scheme with the joint network-channel coding (JNCC) concept into a powerful three-stage concatenated architecture relying on iterative detection, which is specifically designed for the destination node (DN). The proposed scheme is also capable of adapting to rapidly time-varying network topologies, while relying on energy-efficient detection

    Interference Channel with a Half-Duplex Out-of-Band Relay

    Full text link
    A Gaussian interference channel (IC) aided by a half-duplex relay is considered, in which the relay receives and transmits in an orthogonal band with respect to the IC. The system thus consists of two parallel channels, the IC and the channel over which the relay is active, which is referred to as Out-of-Band Relay Channel (OBRC). The OBRC is operated by separating a multiple access phase from the sources to the relay and a broadcast phase from the relay to the destinations. Conditions under which the optimal operation, in terms of the sum-capacity, entails either signal relaying and/or interference forwarding by the relay are identified. These conditions also assess the optimality of either separable or non-separable transmission over the IC and OBRC. Specifically, the optimality of signal relaying and separable coding is established for scenarios where the relay-to-destination channels set the performance bottleneck with respect to the source-to-relay channels on the OBRC. Optimality of interference forwarding and non-separable operation is also established in special cases.Comment: 5 pages, 5 figures, to appear in Proceedings of IEEE ISIT 201

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Relaying for Multiuser Networks in the Absence of Codebook Information

    Full text link
    This work considers relay assisted transmission for multiuser networks when the relay has no access to the codebooks used by the transmitters. The relay is called oblivious for this reason. Of particular interest is the generalized compress-and-forward (GCF) strategy, where the destinations jointly decode the compression indices and the transmitted messages, and their optimality in this setting. The relay-to-destination links are assumed to be out-of-band with finite capacity. Two models are investigated: the multiple access relay channel (MARC) and the interference relay channel (IFRC). For the MARC with an oblivious relay, a new outerbound is derived and it is shown to be tight by means of achievability of the capacity region using GCF scheme. For the IFRC with an oblivious relay, a new strong interference condition is established, under which the capacity region is found by deriving a new outerbound and showing that it is achievable using GCF scheme. The result is further extended to establish the capacity region of M-user MARC with an oblivious relay, and multicast networks containing M sources and K destinations with an oblivious relay.Comment: submitted to IEEE Transactions on Information Theor

    The Three-User Finite-Field Multi-Way Relay Channel with Correlated Sources

    Full text link
    This paper studies the three-user finite-field multi-way relay channel, where the users exchange messages via a relay. The messages are arbitrarily correlated, and the finite-field channel is linear and is subject to additive noise of arbitrary distribution. The problem is to determine the minimum achievable source-channel rate, defined as channel uses per source symbol needed for reliable communication. We combine Slepian-Wolf source coding and functional-decode-forward channel coding to obtain the solution for two classes of source and channel combinations. Furthermore, for correlated sources that have their common information equal their mutual information, we propose a new coding scheme to achieve the minimum source-channel rate.Comment: Author's final version (accepted and to appear in IEEE Transactions on Communications
    corecore