2,429 research outputs found

    ํ˜‘๋™ํ†ต์‹  ๋„คํŠธ์›Œํฌ์—์„œ ๋‹ค์ด๋ฒ„์‹œํ‹ฐ ๋ฐ ์ž์œ ๋„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 8. ๋…ธ์ข…์„ .This dissertation contains the following three contributions to the interesting research topics on diversity techniques and interference alignment (IA) for cooperative communication networks. *Relay on-off threshold (ROT) for non-orthogonal decode and forward (NDF) protocol with distributed orthogonal space-time block codes (DOSTBCs) - Calculate the optimal ROT for NDF protocol with DOSTBCs in high signal to noise power ratio (SNR) region. - Propose suboptimal ROT for NDF protocol with DOSTBCs in low SNR region. - Analyze the diversity order of the proposed scheme. *New IA schemes aided by relays for quasi-static MX2 X channel - Propose IA scheme aided by one full-duplex relay. - Propose IA scheme aided by two half-duplex relay. - Prove that the proposed IA schemes achieve the maximum degrees of freedom (DoF) for quasi-static MX2 X channel. * Selection diversity on the IA for multi-input and multi-output (MIMO) interference channel - Propose the selection criterion of beamforming matrices of IA for MIMO interference channel. - Analyze the diversity order of the proposed scheme. First, we construct the DOSTBCs using source and relay in the cooperative communication networks. In order to decode the DOSTBCs, the destination uses the linear combining (LC) decoding scheme. In this system models, the symbol error rate (SER) is formulated and the ROT is calculated to minimize the SER. It is proved that the full diversity order of NDF protocol can be achieved by using the relay on-off scheme with the optimal threshold. In the second part of this dissertation, two new IA schemes aided by relays for quasi-static MX2 X channel are proposed. The first proposed scheme uses one full-duplex relay and it can achieves the maximum DoF. However, at the full-duplex relay, the transmit signal can be strong self-interference, called echo and thus it is difficult to implement practically. To resolve this problem, at the second proposed IA scheme, two half-duplex relays are used and it is proved that the second proposed IA scheme can also achieve the maximum DoF of MX2 X channel. Finally, the selection scheme for IA is proposed for MIMO interference channel. Most of IA schemes are focused on DoF but there is only a few research results for diversity order which is a crucial measure of reliability. Therefore, we propose a selection criterion to minimize SER and analyze the diversity order of the proposed scheme in the MIMO interference channel.Abstract i Contents iv List of Tables vii List of Figures viii 1. Introduction 1.1. Background 1.2. Overview of Dissertation 1.3. Terms and Notations 2. Diversity Techniques and Interference Alignment 2.1. MIMO Communications 2.2. Space-Time Coding and Selection Diversity 2.3. Cooperative Communications 2.4. Interference Alignment 3. Relay On-Off Threshold for NDF Protocol with Distributed Orthogonal Space-Time Block Codes 3.1. Introduction 3.2. System Models and Linear Combining Decoding 3.2.1. System Models of NDF Protocol 3.2.2. Linear Combining Decoding 3.3. Relay On-Off Threshold and Diversity Analysis 3.3.1. Relay On-Off Threshold 3.3.2. Relay On-Off Threshold for LC Decoding 3.3.3. Decision of Suboptimal Relay On-Off Threshold in Low SNR Region 3.3.4. Diversity Analysis 3.4. Numerical Analysis 3.5. Conclusion 4. New Interference Alignment Scheme Aided by Relays for Quasi-Static X Channels 4.1. Introduction 4.2. Preliminaries: X Channel and Interference Alignment 4.3. The Proposed Schemes and System Models 4.3.1. Two Proposed Schemes 4.3.2. System Models for the Proposed Schemes 4.4. Achievability of the Proposed IA Schemes 4.4.1. IA Scheme with a Full-Duplex Relay 4.4.2. IA Scheme with Two Half-Duplex Relays 4.5. Achievability of the Proposed IA Schemes for the 2ร—M X Channel 4.6. Numerical Analysis 4.7. Conclusion 5. Selection Diversity on the Interference Alignment for MIMO Interference Channels 5.1. Introduction 5.2. Characteristic Function of Multivariate Rayleigh Random Variables 5.3. Combining IA and Selection Schemes for 3-User MIMO Interference Channel 5.3.1. System Model and IA for 3-User MIMO Interference Channel 5.3.2. Orthogonalization of Beamforming Matrices 5.3.3. Selection of Beamforming Matrices 5.4. Diversity Analysis 5.5. Simulation Results 5.6. Conclusions 6. Conclusions Bibliography ์ดˆ๋กDocto

    A Systematic Approach for Interference Alignment in CSIT-less Relay-Aided X-Networks

    Full text link
    The degrees of freedom (DoF) of an X-network with M transmit and N receive nodes utilizing interference alignment with the support of JJ relays each equipped with LjL_j antennas operating in a half-duplex non-regenerative mode is investigated. Conditions on the feasibility of interference alignment are derived using a proper transmit strategy and a structured approach based on a Kronecker-product representation. The advantages of this approach are twofold: First, it extends existing results on the achievable DoF to generalized antenna configurations. Second, it unifies the analysis for time-varying and constant channels and provides valuable insights and interconnections between the two channel models. It turns out that a DoF of \nicefrac{NM}{M+N-1} is feasible whenever the sum of the Lj2โ‰ฅ[Nโˆ’1][Mโˆ’1]L_j^2 \geq [N-1][M-1]

    A New DoF Upper Bound and Its Achievability for KK-User MIMO Y Channels

    Full text link
    This work is to study the degrees of freedom (DoF) for the KK-user MIMO Y channel. Previously, two transmission frameworks have been proposed for the DoF analysis when Nโ‰ฅ2MN \geq 2M, where MM and NN denote the number of antennas at each source node and the relay node respectively. The first method is named as signal group based alignment proposed by Hua et al. in [1]. The second is named as signal pattern approach introduced by Wang et al. in [2]. But both of them only studied certain antenna configurations. The maximum achievable DoF in the general case still remains unknown. In this work, we first derive a new upper bound of the DoF using the genie-aided approach. Then, we propose a more general transmission framework, generalized signal alignment (GSA), and show that the previous two methods are both special cases of GSA. With GSA, we prove that the new DoF upper bound is achievable when NMโˆˆ(0,2+4K(Kโˆ’1)]โˆช[Kโˆ’2,+โˆž)\frac{N}{M} \in \left(0,2+\frac{4}{K(K-1)}\right] \cup \left[K-2, +\infty\right). The DoF analysis in this paper provides a major step forward towards the fundamental capacity limit of the KK-user MIMO Y channel. It also offers a new approach of integrating interference alignment with physical layer network coding.Comment: 6 pages, 3 figures, submitted to IEEE ICC 2015. arXiv admin note: text overlap with arXiv:1405.071

    ON THE DEGREES OF FREEDOM OF THE RELAY X-CHANNEL

    Get PDF
    Interference is a principal source of capacity limitations in today's multi-access multi-user wireless systems. Despite the fact that the capacity of interference channels is still an unsolved problem, the research community has already established a substantial work towards this goal. In effort to provide alternative attainable expressions for performance limits in interference channels, the concept of the Degrees of Freedom (DoF) has been introduced. DoF describes network capacity in terms of the number of maximum possible simultaneous interference-free streams. X-channel is defined where there are two transmitters, two receivers and each transmitter has an independent message for each receiver. Interference channel, broadcast channel and the multiple access channels are special cases of the X-channel. In this thesis, we further investigate the effect of a relay on the DoF of a single input single output (SISO) X-channel with no channel state information at transmitters (CSIT). In contrast to previous work, which has focused on two antennas at the relay to achieve the optimal 4/3 DoF, we focus on the case of a single antenna half duplex relay. We show that with a single antenna relay and delayed output feedback, the upper bound of 4/3 DoF for the X-channel is achievable and we provide the achievability scheme. We revisit the previously studied case of single antenna relay in the more practical setting of alternating CSIT. We show that the optimal 4/3 DoF achievability does not mandate full CSIT availability. For the case of partial alternating CSIT availability at the relay transmitters, we propose a scheme that can achieve the optimal 4/3 DoF and we deduce the minimum CSIT availability for the proposed scheme to achieve optimality

    Opportunistic Relaying in Wireless Networks

    Full text link
    Relay networks having nn source-to-destination pairs and mm half-duplex relays, all operating in the same frequency band in the presence of block fading, are analyzed. This setup has attracted significant attention and several relaying protocols have been reported in the literature. However, most of the proposed solutions require either centrally coordinated scheduling or detailed channel state information (CSI) at the transmitter side. Here, an opportunistic relaying scheme is proposed, which alleviates these limitations. The scheme entails a two-hop communication protocol, in which sources communicate with destinations only through half-duplex relays. The key idea is to schedule at each hop only a subset of nodes that can benefit from \emph{multiuser diversity}. To select the source and destination nodes for each hop, it requires only CSI at receivers (relays for the first hop, and destination nodes for the second hop) and an integer-value CSI feedback to the transmitters. For the case when nn is large and mm is fixed, it is shown that the proposed scheme achieves a system throughput of m/2m/2 bits/s/Hz. In contrast, the information-theoretic upper bound of (m/2)logโกlogโกn(m/2)\log \log n bits/s/Hz is achievable only with more demanding CSI assumptions and cooperation between the relays. Furthermore, it is shown that, under the condition that the product of block duration and system bandwidth scales faster than logโกn\log n, the achievable throughput of the proposed scheme scales as ฮ˜(logโกn)\Theta ({\log n}). Notably, this is proven to be the optimal throughput scaling even if centralized scheduling is allowed, thus proving the optimality of the proposed scheme in the scaling law sense.Comment: 17 pages, 8 figures, To appear in IEEE Transactions on Information Theor

    Relay-Aided Communication in Large Interference Limited Wireless Networks

    Get PDF
    In recent years, the number of active wireless devices increases exponentially and it is, therefore, to expect that the interference increases as well. Interference between communication links is the major performance limiting factor in today's communication networks. Hence, the handling of the overall interference in a network is one major challenge in wireless communication networks of the future. If the interference signals are weak in comparison to the useful signal, they can be simply treated as noise. If the interference signals are strong in comparison to the useful signal, they can be reliably decoded and subtracted from the received signal at the receivers. However, in multiuser communication networks, the interference and the useful signal are often of comparable signal strength. The conventional approach to handle these interference signals is to orthogonalize the useful signal and the interference signals using, e.g., time division multiple access (TDMA) or frequency division multiple access (FDMA). In the past few years, instead of orthogonalization, interference alignment (IA) has been developed as an efficient technique to handle interference signals, especially in the high signal to noise ratio (SNR) region. The basic idea of IA is to align multiple interference signals in a particular subspace of reduced dimension at each receiver. The objective is to minimize the signal dimensions occupied by interference at each receiver. In order to perform IA, the receive space is divided into two disjoint subspaces, the useful signal subspace and the interference signal subspace. Each transmitting node designs its transmit filters in such a way that at each receiving node, all interference signals are within the interference subspace and only the useful signal is in the useful subspace. In this thesis, the focus is on large interference limited wireless communication networks. In contrast to the conventional use of relays, for extending the coverage, in this thesis, the relays are used to manipulate the effective end-to-end channel between the transmitters and receivers to perform IA in the network. Since the relays are used to assist the process of IA and not interested in the data streams transmitted by the nodes, amplify-and-forward relays are sufficient to support the process of IA. Therefore, the main focus of this thesis is on amplify-and-forward relays. Throughout this thesis, it is assumed that all nodes and relays are multi-antenna half-duplex devices. When considering large networks, the assumption that all nodes are connected to all relays does not hold due to physical propagation phenomena, e.g., high path loss and shadowing. In such large networks, the distances between different nodes may differ a lot, leading to links of considerably different signal strengths, where sufficiently weak links may be neglected. Hence, large networks are in general partially connected. In this thesis, three important interference-limited relay aided wireless network topologies are investigated, the partially connected relay aided multi-pair pair-wise communication network, the fully connected multi-group multi-way relaying network and the partially connected multi-group multi-way relaying network. For each of these topologies, new algorithms to perform IA are developed in this thesis. First, a large partially connected relay aided pair-wise communication network is considered. The concept of an appropriate partitioning of a partially connected network into subnetworks which are themselves fully connected is introduced. Each of these subnetworks contains a single relay and all nodes being connected to this relay. Some nodes or even communication pairs may be connected to multiple relays. The bidirectional pair-wise communication between the nodes takes place via the intermediate relays, using the two-way relaying protocol. Only relays which are connected to both nodes of a communication pair can serve this pair. Hence, it is assumed that all communication pairs in the entire network are served by at least one relay. The most challenging part of such a partially connected network is the handling of nodes which are connected to multiple relays. Hence, techniques called simultaneous signal alignment (SSA) and simultaneous channel alignment (SCA), are proposed to perform signal alignment (SA) and channel alignment (CA) with multiple relays simultaneously. SA means that all nodes transmit to the relay in such a way that the signals of each communicating pair are pair-wise aligned at the relay. For CA, which is dual to SA, the receive filter of each node is designed such that the effective channels between the relay and both nodes of a communicating pair span the same subspace. A closed-form solution to perform IA in this network topology is obtained and the properness conditions for SSA and SCA are derived. It is shown that local channel state information (CSI) is sufficient to perform IA in partially connected networks, whereas in fully connected relay aided networks, global CSI is required in general. Through simulations, it is shown that the proposed closed-form solution achieves more degrees of freedom (DoF) than the reference algorithms and has better sum-rate performance, especially in the high SNR-region. Especially in large wireless networks, it may happen that not both nodes of a communication pair are connected to the same relays. If a single node of a communication pair is in addition connected to a relay which, therefore, cannot assist the communication, this node receives only interference and no useful signal from this relay. Such a node suffers from inter-subnetwork interference, due to the connection by an inter-subnetwork link to the additional relay. Hence, in this thesis, a closed form algorithm which minimizes the inter-subnetwork interference power in the whole partially connected network is proposed and the properness conditions are derived. The condition under which an interference free-communication can be achieved by the proposed inter-subnetwork interference power minimization algorithm is derived. Further, it is shown that the proposed inter-subnetwork interference power minimization algorithm achieves a higher sum rate in comparison to the considered reference algorithm. Secondly, a fully connected multi-group multi-way relaying networks is considered. In such a network, multiple nodes form a group and each node wants to share its message with all other nodes in its group via an intermediate relay. The group-wise communication between the nodes inside a group takes place via the intermediate relay, using a transmission strategy considering several multiple access (MAC) phases and several multicast (MC) phases, in general. In this thesis, a multicast IA algorithm to handle the interference in such a network is proposed. The idea of the proposed algorithm is that in each of the MC phases, a multiple input multiple output (MIMO) interference multicast channel is created by separating the antennas of the relay into as many clusters as groups in the network. Each of these clusters serves a specific group of nodes and transmits in such a way that the signals transmitted from different clusters are aligned at the receiving nodes of the non-intended multicast groups. It is shown that the minimum required number of antennas at the relay is independent of the number of nodes per group, which is an important property since the number of antennas available at the relay is limited in general. Furthermore, the properness conditions for the proposed multicast IA algorithm are derived. It is shown that the proposed multicast algorithm outperforms a reference algorithm for a broad range of SNR values, while still requiring less antennas at the relay. Finally, a large partially connected multi-group multi-way relay network is considered. In contrast to the fully connected multi-group multi-way relaying network, multiple relays are considered in this partially connected network. Such a partially connected network can be partitioned into subnetworks that are themselves fully connected. Hence, such a partially connected network consists of multiple subnetworks, where each of these contains a single relay and all groups of nodes which are connected to this relay. Each group of nodes may be connected to one or multiple relays. This means that not all groups of nodes are connected to all relays in the network. However, any group is connected to at least one relay which serves this group of nodes. The group-wise exchange of data between the nodes inside a group is performed via the multi-way relaying protocol. The most challenging part of such a partially connected network is the handling of the nodes inside groups which are connected to multiple relays. To overcome this challenge, new techniques called simultaneous group signal alignment (SGSA) and simultaneous group channel alignment (SGCA) are introduced to perform SA and CA in partially connected multi-group multi-way relaying networks. A closed-form IA solution for this network topology is obtained and the properness conditions for the solvability of SGSA and SGCA are derived. It is shown that the proposed IA algorithm outperforms the reference algorithm in terms of sum rate and DoF
    • โ€ฆ
    corecore