3 research outputs found

    무선 쀑계 λ„€νŠΈμ›Œν¬μ—μ„œ μ‹ ν˜ΈλŒ€μž‘μŒλΉ„μ˜ λˆ„μ λΆ„ν¬ν•¨μˆ˜ 기반 쀑계기 선택 κΈ°λ²•μ˜ μ„±λŠ₯ 뢄석

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 전기·컴퓨터곡학뢀, 2015. 8. μ΄μž¬ν™.무선 쀑계 κΈ°μˆ μ€ μ°¨μ„ΈλŒ€ 무선톡신 μ‹œμŠ€ν…œμ—μ„œ μš”κ΅¬λ˜λŠ” 높은 μ„œλΉ„μŠ€ ν’ˆμ§ˆ 및 데이터 전솑λ₯  달성을 μœ„ν•΄ 고렀되고 μžˆλŠ” λŒ€ν‘œμ μΈ 기술 쀑 ν•˜λ‚˜μ΄λ‹€. 무선 쀑계 기술이 κ°–κ³  μžˆλŠ” λ‹€μ–‘ν•œ μž₯점으둜 인해 ν˜„μž¬κΉŒμ§€ IEEE 802.16j 및 3GPP LTE-Advanced λ“±μ˜ 무선톡신 μ‹œμŠ€ν…œ ν‘œμ€€μ— λ°˜μ˜λ˜κΈ°λ„ ν•˜μ˜€λ‹€. μ‹€μ§ˆμ μœΌλ‘œ 두 λ…Έλ“œ 사이 μ±„λ„μ˜ 톡계적 νŠΉμ„±μ€ κ·Έλ“€μ˜ μœ„μΉ˜μ— 따라 달라지기 λ•Œλ¬Έμ— 각 μ±„λ„λ“€μ˜ 톡계적 νŠΉμ„±μ€ μ„œλ‘œ λ™μΌν•˜μ§€ μ•Šλ‹€. 각 μ±„λ„λ“€μ˜ 톡계적 νŠΉμ„±μ΄ λ™μΌν•˜μ§€ μ•Šμ„ λ•Œ, 무선 쀑계 κΈ°μˆ μ—μ„œ κ°€μž₯ μœ μš©ν•œ 기법 쀑 ν•˜λ‚˜μΈ 쀑계기 선택 기법은 νŠΉμ • 쀑계기듀이 더 자주 μ„ νƒλ˜λŠ” λ“±μ˜ 곡정성 문제λ₯Ό μœ λ°œμ‹œν‚¬ 수 μžˆλ‹€. 특히, 이 λ¬Έμ œλŠ” μ œν•œλœ 배터리λ₯Ό 가진 μ€‘κ³„κΈ°λ“€λ‘œ κ΅¬μ„±λœ λ„€νŠΈμ›Œν¬μ—μ„œ λ„€νŠΈμ›Œν¬μ˜ 수λͺ…을 μ€„μ΄κ²Œ ν•˜λŠ” μš”μΈμ΄ 될 수 μžˆλ‹€. λ”°λΌμ„œ μ΄λŸ¬ν•œ λ„€νŠΈμ›Œν¬μ—μ„œλŠ” μ‚¬μš©μžλ“€μ˜ 톡신 신뒰도 뿐만 μ•„λ‹ˆλΌ, μ€‘κ³„κΈ°μ—μ„œμ˜ 선택 곡정성도 ν•¨κ»˜ κ³ λ €ν•  ν•„μš”κ°€ μžˆλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” 무선 쀑계 λ„€νŠΈμ›Œν¬μ—μ„œ μ‚¬μš©μžλ“€μ˜ 톡신 신뒰도와 쀑계기 κ°„μ˜ 선택 곡정성을 ν•¨κ»˜ κ³ λ €ν•˜κΈ° μœ„ν•΄ μˆ˜μ‹  μ‹ ν˜ΈλŒ€μž‘μŒλΉ„μ˜ λˆ„μ λΆ„ν¬ν•¨μˆ˜λ₯Ό 기반으둜 ν•˜λŠ” μƒˆλ‘œμš΄ 쀑계기 선택 기법을 μ œμ•ˆν•œλ‹€. μ£Όμš”ν•œ 연ꡬ κ²°κ³ΌλŠ” λ‹€μŒκ³Ό κ°™λ‹€. λ¨Όμ €, λ‚˜μΉ΄κ°€λ―Έ-m νŽ˜μ΄λ”© 채널 ν™˜κ²½μ„ 가진 일방ν–₯ 쀑계 λ„€νŠΈμ›Œν¬λ₯Ό μœ„ν•œ ν”„λ‘œμ•‘ν‹°λΈŒ(proactive) 및 λ¦¬μ•‘ν‹°λΈŒ(reactive) λ°©μ‹μ˜ μˆ˜μ‹  μ‹ ν˜ΈλŒ€μž‘μŒλΉ„ λˆ„μ λΆ„ν¬ν•¨μˆ˜ 기반 쀑계기 선택 기법을 μ œμ•ˆν•œλ‹€. 각각의 쀑계기 선택 기법을 μœ„ν•΄ 쀑계기 선택 ν™•λ₯ μ„ μœ λ„ν•˜μ—¬ μ œμ•ˆλœ 각 쀑계기 선택 κΈ°λ²•λ“€μ˜ 평균 쀑계기 곡정성을 λΆ„μ„ν•œλ‹€. λ˜ν•œ 각 선택 기법에 λŒ€ν•œ 뢈λŠ₯ ν™•λ₯ μ„ μˆ˜μ‹μœΌλ‘œ μœ λ„ν•˜κ³ , μœ λ„ν•œ 뢈λŠ₯ ν™•λ₯ μ„ 점근적 ν‘œν˜„μœΌλ‘œ λ‚˜νƒ€λ‚΄μ–΄ 각 기법듀이 얻을 수 μžˆλŠ” λ‹€μ΄λ²„μ‹œν‹° 차수λ₯Ό λΆ„μ„ν•œλ‹€. λͺ¨μ˜μ‹€ν—˜μ„ 톡해 얻어진 평균 쀑계기 곡정성과 뢈λŠ₯ ν™•λ₯ μ΄ μœ λ„ν•œ 평균 쀑계기 곡정성 및 뢈λŠ₯ ν™•λ₯  κ°’κ³Ό μΌμΉ˜ν•¨μ„ ν™•μΈν•œλ‹€. 그리고 μ œμ•ˆλœ 기법이 쀑계기듀 사이에 곡정성을 μ™„λ²½ν•˜κ²Œ 보μž₯ν•˜κ³  λ„€νŠΈμ›Œν¬ 수λͺ…을 μ¦κ°€μ‹œν‚€λ©°, λ‹€μ΄λ²„μ‹œν‹° μ°¨μˆ˜κ°€ μ€‘κ³„κΈ°μ˜ μˆ˜μ™€ νŽ˜μ΄λ”© νŒŒλΌλ―Έν„° m 값에 따라 달라짐을 ν™•μΈν•œλ‹€. λ‘˜μ§Έ, λ‚˜μΉ΄κ°€λ―Έ-m νŽ˜μ΄λ”© 채널 ν™˜κ²½μ„ 가진 μ–‘λ°©ν–₯ 쀑계 λ„€νŠΈμ›Œν¬λ₯Ό μœ„ν•œ ν”„λ‘œμ•‘ν‹°λΈŒ 및 λ¦¬μ•‘ν‹°λΈŒ λ°©μ‹μ˜ μˆ˜μ‹  μ‹ ν˜ΈλŒ€μž‘μŒλΉ„ λˆ„μ λΆ„ν¬ν•¨μˆ˜ 기반 쀑계기 선택 기법을 μ œμ•ˆν•œλ‹€. μ œμ•ˆλœ ν”„λ‘œμ•‘ν‹°λΈŒ λ°©μ‹μ˜ 쀑계기 선택 기법에 λŒ€ν•΄μ„œλŠ” μ •ν™•ν•œ 쀑계기 선택 ν™•λ₯ μ˜ μœ λ„λ₯Ό 톡해 평균 쀑계기 곡정성을 λΆ„μ„ν•œλ‹€. μ œμ•ˆλœ λ¦¬μ•‘ν‹°λΈŒ λ°©μ‹μ˜ 쀑계기 선택 기법에 λŒ€ν•΄μ„œλŠ” 쀑계기 선택 ν™•λ₯ μ˜ 적뢄 및 근사 ν‘œν˜„μ„ μœ λ„ν•˜μ—¬ 평균 쀑계기 곡정성을 λΆ„μ„ν•œλ‹€. λ˜ν•œ 각 선택 기법에 λŒ€ν•œ 뢈λŠ₯ ν™•λ₯ μ„ μˆ˜μ‹μœΌλ‘œ μœ λ„ν•˜κ³ , μœ λ„ν•œ 뢈λŠ₯ ν™•λ₯ μ„ 점근적 ν‘œν˜„μœΌλ‘œ λ‚˜νƒ€λ‚΄μ–΄ 각 기법듀이 얻을 수 μžˆλŠ” λ‹€μ΄λ²„μ‹œν‹° 차수λ₯Ό λΆ„μ„ν•œλ‹€. λͺ¨μ˜μ‹€ν—˜μ„ 톡해 얻어진 평균 쀑계기 곡정성과 뢈λŠ₯ ν™•λ₯ μ΄ μœ λ„ν•œ 평균 쀑계기 곡정성 및 뢈λŠ₯ ν™•λ₯  κ°’κ³Ό μΌμΉ˜ν•¨μ„ ν™•μΈν•œλ‹€. 그리고 μ œμ•ˆλœ 기법이 쀑계기듀 사이에 곡정성을 μ™„λ²½ν•˜κ²Œ 보μž₯ν•˜κ³  λ„€νŠΈμ›Œν¬ 수λͺ…을 μ¦κ°€μ‹œν‚€λ©°, λ‹€μ΄λ²„μ‹œν‹° μ°¨μˆ˜κ°€ μ€‘κ³„κΈ°μ˜ μˆ˜μ™€ νŽ˜μ΄λ”© νŒŒλΌλ―Έν„° m 값에 따라 달라짐을 ν™•μΈν•œλ‹€.Wireless relay technology is one of the most promising technologies for the future communication systems which provide coverage extension and better quality of service (QoS) such as higher data rate and lower outage probability with few excessive network loads. Due to its advantages, it has been adopted in wireless standards such as IEEE 802.16j and 3GPP LTE-Advanced. In practice, since statistics of the channel between any two nodes vary depending on their locations, they are not identical which means that channels can experience different fading. When statistics of the channel are not identical, relay selection, which is one of the most useful techniques for wireless relay technology, can cause fairness problem that particular relays are selected more frequently than other relays. Especially, this problem can cause reduction of lifetime in the network with multiple relays having limited battery power. In this network, it is needed to focus on selection fairness for relays as well as reliability at end-users. In this dissertation, to focus on both selection fairness for relays and reliability at end-users, we propose novel relay selection schemes based on cumulative distribution functions (CDFs) of signal-to-noise ratios (SNRs) in wireless relay networks. The dissertation consists of two main results. First, we propose the proactive and the reactive relay selection schemes based on CDFs of SNRs for one-way relay networks over Nakagami-m fading channels. If a relay is selected before the source transmission, it is called as proactive relay selection. Otherwise, if a relay is selected after the source transmission, it is called as reactive relay selection. For both the proactive and the reactive relay selection schemes, we analyze average relay fairness by deriving relay selection probability. For the proactive relay selection scheme, we obtain diversity order by deriving the integral and asymptotic expressions for outage probability. Also, for the reactive relay selection scheme, we obtain diversity order by deriving the exact closed-form and asymptotic expressions for outage probability. Numerical results show that the analytical results of the proposed schemes match the simulation results well. It is shown that the proposed schemes guarantee strict fairness among relays and extend network lifetime. Also, it is shown that diversity order depends on the number of relays and fading severity parameters. Second, we propose the proactive and the reactive relay selection schemes based on CDFs of SNRs for two-way relay networks over Nakagami-m fading channels. For the proactive relay selection scheme, we analyze average relay fairness by deriving relay selection probability. Also, we analyze diversity order by deriving the integral and asymptotic expressions for outage probability. For the reactive relay selection scheme, we analyze average relay fairness by deriving the integral and asymptotic expressions for relay selection probability. Also, we obtain diversity order by deriving the asymptotic expression for outage probability. Numerical results show that the analytical results of the proposed schemes match the simulation results well. It is shown that the proposed schemes guarantee strict fairness among relays and extend network lifetime. Also, it is shown that diversity order depends on the number of relays and fading severity parameters.Contents Abstract i 1 Introduction 1 1.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Wireless Relay Technology . . . . . . . . . . . . . . . . . . . . 3 1.2 Outline of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Relay Selection Based on CDFs of SNRs for One-Way Relay Networks 14 2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1 Proactive CDF-Based Relay Selection . . . . . . . . . . . . . 19 2.1.2 Reactive CDF-Based Relay Selection . . . . . . . . . . . . . . 20 2.2 Performance Analysis of Proactive CDF-Based Relay Selection . . . . 22 2.2.1 Average Relay Fairness Analysis . . . . . . . . . . . . . . . . . 22 2.2.2 Outage Probability Analysis . . . . . . . . . . . . . . . . . . . 27 2.3 Performance Analysis of Reactive CDF-Based Relay Selection . . . . 34 2.3.1 Average Relay Fairness Analysis . . . . . . . . . . . . . . . . . 34 2.3.2 Outage Probability Analysis . . . . . . . . . . . . . . . . . . . 36 2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4.1 Average Relay Fairness . . . . . . . . . . . . . . . . . . . . . . 39 2.4.2 Network Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.4.3 Outage Probability . . . . . . . . . . . . . . . . . . . . . . . . 53 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3 Relay Selection Based on CDFs of SNRs for Two-Way Relay Networks 66 3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1.1 Proactive CDF-based Relay Selection . . . . . . . . . . . . . . 68 3.1.2 Reactive CDF-based Relay Selection . . . . . . . . . . . . . . 72 3.2 Performance Analysis of Proactive CDF-Based Relay Selection . . . . 73 3.2.1 Average Relay Fairness Analysis . . . . . . . . . . . . . . . . . 73 3.2.2 Outage Probability Analysis . . . . . . . . . . . . . . . . . . . 74 3.3 Performance Analysis of Reactive CDF-Based Relay Selection . . . . 82 3.3.1 Average Relay Fairness Anlaysis . . . . . . . . . . . . . . . . . 82 3.3.2 Outage Probability Analysis . . . . . . . . . . . . . . . . . . . 86 3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.4.1 Average Relay Fairness . . . . . . . . . . . . . . . . . . . . . . 89 3.4.2 Network Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . 100 3.4.3 Outage Probability . . . . . . . . . . . . . . . . . . . . . . . . 105 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4 Conclusion 116 4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.2 Possible Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.2.1 Device-to-Device (D2D) Communications . . . . . . . . . . . 118 4.2.2 Low Power Body Sensor Networks . . . . . . . . . . . . . . . 120 4.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Bibliography 122 Korean Abstract 139Docto

    Multi-way relay networks: characterization, performance analysis and transmission scheme design

    No full text
    Multi-way relay networks (MWRNs) are a growing research area in the field of relay based wireless networks. Such networks provide a pathway for solving the ever in- creasing demand for higher data rate and spectral efficiency in a general multi-user scenario. MWRNs have potential applications in video conferencing, file sharing in a social network, as well as satellite networks and sensor networks. Recent research on MWRNs focuses on efficient transmission protocol design by harnessing different network coding schemes, higher dimensional structured codes and advanced relaying protocols. However, the existing research misses out the characterization and analysis of practical issues that influence the performance of MWRNs. Moreover, the existing transmission schemes suffer some significant limitations, that need to be solved for maximizing the benefits of MWRNs. In this thesis, we investigate the practical issues that critically influence the perfor- mance of a MWRN and propose solutions that can outperform existing schemes. To be specific, we characterize error propagation phenomenon for additive white Gaus- sian noise (AWGN) and fading channels with functional decode and forward (FDF) and amplify and forward (AF) relaying protocols, propose a new pairing scheme that out- performs the existing schemes for lattice coded FDF MWRNs in terms of the achievable rate and error performance and finally, analyze the impact of imperfect channel state information (CSI) and optimum power allocation on MWRNs. At first, we analyze the error performance of FDF and AF MWRNs with pair- wise transmission using binary phase shift keying (BPSK) modulation in AWGN and Rayleigh fading channels. We quantify the possible error events in an L-user FDF or AF MWRN and derive accurate asymptotic bounds on the probability for the general case that a user incorrectly decodes the messages of exactly k (k ∈ [1, L βˆ’ 1]) other users. We show that at high signal-to-noise ratio (SNR), the higher order error events (k β‰₯ 3) are less probable in AF MWRN, but all error events are equally probable in a FDF MWRN. We derive the average BER of a user in a FDF or AF MWRN under high SNR conditions and provide simulation results to verify them. Next, we propose a novel user pairing scheme for lattice coded FDF MWRNs. Lattice codes can achieve the capacity of AWGN channels and are used in digital communica- tions as high-rate signal constellations. Our proposed pairing scheme selects a common user with the best average channel gain and thus, allows it to positively contribute to the overall system performance. Assuming lattice code based transmissions, we derive upper bounds on the average common rate and the average sum rate with the proposed pairing scheme. In addition, considering M-ary QAM with square constellation as a special case of lattice codes, we derive asymptotic average symbol error rate (SER) of the MWRN. We show that in terms of the achievable rates and error performance, the proposed pairing scheme outperforms the existing pairing schemes under a wide range of channel scenarios. Finally, we investigate lattice coded FDF and AF MWRNs with imperfect CSI. Con- sidering lattice codes of sufficiently large dimension, we obtain the bounds on the com- mon rate and sum rate. In addition, considering M-ary quadrature amplitude mod- ulation (QAM) with square constellations, we obtain expressions for the average SER in FDF MWRNs. For AF MWRNs, considering BPSK modulation as the simplest case of lattice codes, we obtain the average BER. Moreover, we obtain the optimum power allocation coefficients to maximize the sum rate in AF MWRN. For both FDF and AF relaying protocols, the average common rate and sum rate are decreasing functions of the estimation error. The analysis shows that the error performance of a FDF MWRN is an increasing function of both the channel estimation error and the number of users, whereas, for AF MWRN, the error performance is an increasing function of only the channel estimation error. Also, we show that to achieve the same sum rate in AF MWRN, optimum power allocation requires 7 βˆ’ 9 dB less power compared to equal power allocation depending upon users’ channel conditions
    corecore