367 research outputs found

    Optimal Beamforming for Two-Way Multi-Antenna Relay Channel with Analogue Network Coding

    Full text link
    This paper studies the wireless two-way relay channel (TWRC), where two source nodes, S1 and S2, exchange information through an assisting relay node, R. It is assumed that R receives the sum signal from S1 and S2 in one time-slot, and then amplifies and forwards the received signal to both S1 and S2 in the next time-slot. By applying the principle of analogue network (ANC), each of S1 and S2 cancels the so-called "self-interference" in the received signal from R and then decodes the desired message. Assuming that S1 and S2 are each equipped with a single antenna and R with multi-antennas, this paper analyzes the capacity region of an ANC-based TWRC with linear processing (beamforming) at R. The capacity region contains all the achievable bidirectional rate-pairs of S1 and S2 under the given transmit power constraints at S1, S2, and R. We present the optimal relay beamforming structure as well as an efficient algorithm to compute the optimal beamforming matrix based on convex optimization techniques. Low-complexity suboptimal relay beamforming schemes are also presented, and their achievable rates are compared against the capacity with the optimal scheme.Comment: to appear in JSAC, 200

    Joint Source and Relay Precoding Designs for MIMO Two-Way Relaying Based on MSE Criterion

    Full text link
    Properly designed precoders can significantly improve the spectral efficiency of multiple-input multiple-output (MIMO) relay systems. In this paper, we investigate joint source and relay precoding design based on the mean-square-error (MSE) criterion in MIMO two-way relay systems, where two multi-antenna source nodes exchange information via a multi-antenna amplify-and-forward relay node. This problem is non-convex and its optimal solution remains unsolved. Aiming to find an efficient way to solve the problem, we first decouple the primal problem into three tractable sub-problems, and then propose an iterative precoding design algorithm based on alternating optimization. The solution to each sub-problem is optimal and unique, thus the convergence of the iterative algorithm is guaranteed. Secondly, we propose a structured precoding design to lower the computational complexity. The proposed precoding structure is able to parallelize the channels in the multiple access (MAC) phase and broadcast (BC) phase. It thus reduces the precoding design to a simple power allocation problem. Lastly, for the special case where only a single data stream is transmitted from each source node, we present a source-antenna-selection (SAS) based precoding design algorithm. This algorithm selects only one antenna for transmission from each source and thus requires lower signalling overhead. Comprehensive simulation is conducted to evaluate the effectiveness of all the proposed precoding designs.Comment: 32 pages, 10 figure

    On Design of Collaborative Beamforming for Two-Way Relay Networks

    Full text link
    We consider a two-way relay network, where two source nodes, S1 and S2, exchange information through a cluster of relay nodes. The relay nodes receive the sum signal from S1 and S2 in the first time slot. In the second time slot, each relay node multiplies its received signal by a complex coefficient and retransmits the signal to the two source nodes, which leads to a collaborative two-way beamforming system. By applying the principle of analog network coding, each receiver at S1 and S2 cancels the "self-interference" in the received signal from the relay cluster and decodes the message. This paper studies the 2-dimensional achievable rate region for such a two-way relay network with collaborative beamforming. With different assumptions of channel reciprocity between the source-relay and relay-source channels, the achievable rate region is characterized under two setups. First, with reciprocal channels, we investigate the achievable rate regions when the relay cluster is subject to a sum-power constraint or individual-power constraints. We show that the optimal beamforming vectors obtained from solving the weighted sum inverse-SNR minimization (WSISMin) problems are sufficient to characterize the corresponding achievable rate region. Furthermore, we derive the closed form solutions for those optimal beamforming vectors and consequently propose the partially distributed algorithms to implement the optimal beamforming, where each relay node only needs the local channel information and one global parameter. Second, with the non-reciprocal channels, the achievable rate regions are also characterized for both the sum-power constraint case and the individual-power constraint case. Although no closed-form solutions are available under this setup, we present efficient numerical algorithms.Comment: new version of the previously posted, single column double spacing, 24 page

    Wireless MIMO Switching: Weighted Sum Mean Square Error and Sum Rate Optimization

    Full text link
    This paper addresses joint transceiver and relay design for a wireless multiple-input-multiple-output (MIMO) switching scheme that enables data exchange among multiple users. Here, a multi-antenna relay linearly precodes the received (uplink) signals from multiple users before forwarding the signal in the downlink, where the purpose of precoding is to let each user receive its desired signal with interference from other users suppressed. The problem of optimizing the precoder based on various design criteria is typically non-convex and difficult to solve. The main contribution of this paper is a unified approach to solve the weighted sum mean square error (MSE) minimization and weighted sum rate maximization problems in MIMO switching. Specifically, an iterative algorithm is proposed for jointly optimizing the relay's precoder and the users' receive filters to minimize the weighted sum MSE. It is also shown that the weighted sum rate maximization problem can be reformulated as an iterated weighted sum MSE minimization problem and can therefore be solved similarly to the case of weighted sum MSE minimization. With properly chosen initial values, the proposed iterative algorithms are asymptotically optimal in both high and low signal-to-noise ratio (SNR) regimes for MIMO switching, either with or without self-interference cancellation (a.k.a., physical-layer network coding). Numerical results show that the optimized MIMO switching scheme based on the proposed algorithms significantly outperforms existing approaches in the literature.Comment: This manuscript is under 2nd review of IEEE Transactions on Information Theor

    Cooperative Jamming for Secure Communications in MIMO Relay Networks

    Full text link
    Secure communications can be impeded by eavesdroppers in conventional relay systems. This paper proposes cooperative jamming strategies for two-hop relay networks where the eavesdropper can wiretap the relay channels in both hops. In these approaches, the normally inactive nodes in the relay network can be used as cooperative jamming sources to confuse the eavesdropper. Linear precoding schemes are investigated for two scenarios where single or multiple data streams are transmitted via a decode-and-forward (DF) relay, under the assumption that global channel state information (CSI) is available. For the case of single data stream transmission, we derive closed-form jamming beamformers and the corresponding optimal power allocation. Generalized singular value decomposition (GSVD)-based secure relaying schemes are proposed for the transmission of multiple data streams. The optimal power allocation is found for the GSVD relaying scheme via geometric programming. Based on this result, a GSVD-based cooperative jamming scheme is proposed that shows significant improvement in terms of secrecy rate compared to the approach without jamming. Furthermore, the case involving an eavesdropper with unknown CSI is also investigated in this paper. Simulation results show that the secrecy rate is dramatically increased when inactive nodes in the relay network participate in cooperative jamming.Comment: 30 pages, 7 figures, to appear in IEEE Transactions on Signal Processin
    corecore