332 research outputs found

    Towards 6G-Enabled Internet of Things with IRS-Empowered Backscatter-Assisted WPCNs

    Get PDF
    Wireless powered communication networks (WPCNs) are expected to play a key role in the forthcoming 6G systems. However, they have not yet found their way to large-scale practical implementations due to their inherent shortcomings such as the low efficiency of energy transfer and information transmission. In this thesis, we aim to study the integration of WPCNs with other novel technologies of backscatter communication and intelligent reflecting surface (IRS) to enhance the performance and improve the efficiency of these networks so as to prepare them for being seamlessly fitted into the 6G ecosystem. We first study the incorporation of backscatter communication into conventional WPCNs and investigate the performance of backscatter-assisted WPCNs (BS-WPCNs). We then study the inclusion of IRS into the WPCN environment, where an IRS is used for improving the performance of energy transfer and information transmission in WPCNs. After that, the simultaneous integration of backscatter communication and IRS technologies into WPCNs is investigated, where the analyses show the significant performance gains that can be achieved by this integration

    Exploiting Backscatter-Aided Relay Communications with Hybrid Access Model in Device-to-Device Networks

    Full text link
    © 2015 IEEE. The backscatter and active RF radios can complement each other and bring potential performance gain. In this paper, we envision a dual-mode radio structure that allows each device to make smart decisions on mode switch between backscatter communications (i.e., the passive mode) or RF communications (i.e., the active mode), according to the channel and energy conditions. The flexibility in mode switching also makes it more complicated for transmission control and network optimization. To exploit the radio diversity gain, we consider a wireless powered device-to-device network of hybrid radios and propose a sum throughput maximization by jointly optimizing energy beamforming and transmission scheduling in two radio modes. We further exploit the user cooperation gain by allowing the passive radios to relay for the active radios. As such, the sum throughput maximization is reformulated into a non-convex. We first present a sub-optimal algorithm based on successive convex approximation, which optimizes the relays' reflection coefficients by iteratively solving semi-definite programs. We also devise a set of heuristic algorithms with reduced computational complexity, which are shown to significantly improve the sum throughput and amenable for practical implementation

    Energy-efficient non-orthogonal multiple access for wireless communication system

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as a potential solution for enhancing the throughput of next-generation wireless communications. NOMA is a potential option for 5G networks due to its superiority in providing better spectrum efficiency (SE) compared to orthogonal multiple access (OMA). From the perspective of green communication, energy efficiency (EE) has become a new performance indicator. A systematic literature review is conducted to investigate the available energy efficient approach researchers have employed in NOMA. We identified 19 subcategories related to EE in NOMA out of 108 publications where 92 publications are from the IEEE website. To help the reader comprehend, a summary for each category is explained and elaborated in detail. From the literature review, it had been observed that NOMA can enhance the EE of wireless communication systems. At the end of this survey, future research particularly in machine learning algorithms such as reinforcement learning (RL) and deep reinforcement learning (DRL) for NOMA are also discussed
    • …
    corecore