48,260 research outputs found

    An Improved Tight Closure Algorithm for Integer Octagonal Constraints

    Full text link
    Integer octagonal constraints (a.k.a. ``Unit Two Variables Per Inequality'' or ``UTVPI integer constraints'') constitute an interesting class of constraints for the representation and solution of integer problems in the fields of constraint programming and formal analysis and verification of software and hardware systems, since they couple algorithms having polynomial complexity with a relatively good expressive power. The main algorithms required for the manipulation of such constraints are the satisfiability check and the computation of the inferential closure of a set of constraints. The latter is called `tight' closure to mark the difference with the (incomplete) closure algorithm that does not exploit the integrality of the variables. In this paper we present and fully justify an O(n^3) algorithm to compute the tight closure of a set of UTVPI integer constraints.Comment: 15 pages, 2 figure

    Magnification Control in Self-Organizing Maps and Neural Gas

    Get PDF
    We consider different ways to control the magnification in self-organizing maps (SOM) and neural gas (NG). Starting from early approaches of magnification control in vector quantization, we then concentrate on different approaches for SOM and NG. We show that three structurally similar approaches can be applied to both algorithms: localized learning, concave-convex learning, and winner relaxing learning. Thereby, the approach of concave-convex learning in SOM is extended to a more general description, whereas the concave-convex learning for NG is new. In general, the control mechanisms generate only slightly different behavior comparing both neural algorithms. However, we emphasize that the NG results are valid for any data dimension, whereas in the SOM case the results hold only for the one-dimensional case.Comment: 24 pages, 4 figure

    The relation between degrees of belief and binary beliefs: A general impossibility theorem

    Get PDF
    Agents are often assumed to have degrees of belief (“credences”) and also binary beliefs (“beliefs simpliciter”). How are these related to each other? A much-discussed answer asserts that it is rational to believe a proposition if and only if one has a high enough degree of belief in it. But this answer runs into the “lottery paradox”: the set of believed propositions may violate the key rationality conditions of consistency and deductive closure. In earlier work, we showed that this problem generalizes: there exists no local function from degrees of belief to binary beliefs that satisfies some minimal conditions of rationality and non-triviality. “Locality” means that the binary belief in each proposition depends only on the degree of belief in that proposition, not on the degrees of belief in others. One might think that the impossibility can be avoided by dropping the assumption that binary beliefs are a function of degrees of belief. We prove that, even if we drop the “functionality” restriction, there still exists no local relation between degrees of belief and binary beliefs that satisfies some minimal conditions. Thus functionality is not the source of the impossibility; its source is the condition of locality. If there is any non-trivial relation between degrees of belief and binary beliefs at all, it must be a “holistic” one. We explore several concrete forms this “holistic” relation could take

    An exact solution method for binary equilibrium problems with compensation and the power market uplift problem

    Get PDF
    We propose a novel method to find Nash equilibria in games with binary decision variables by including compensation payments and incentive-compatibility constraints from non-cooperative game theory directly into an optimization framework in lieu of using first order conditions of a linearization, or relaxation of integrality conditions. The reformulation offers a new approach to obtain and interpret dual variables to binary constraints using the benefit or loss from deviation rather than marginal relaxations. The method endogenizes the trade-off between overall (societal) efficiency and compensation payments necessary to align incentives of individual players. We provide existence results and conditions under which this problem can be solved as a mixed-binary linear program. We apply the solution approach to a stylized nodal power-market equilibrium problem with binary on-off decisions. This illustrative example shows that our approach yields an exact solution to the binary Nash game with compensation. We compare different implementations of actual market rules within our model, in particular constraints ensuring non-negative profits (no-loss rule) and restrictions on the compensation payments to non-dispatched generators. We discuss the resulting equilibria in terms of overall welfare, efficiency, and allocational equity

    Combining and Relating Control Effects and their Semantics

    Full text link
    Combining local exceptions and first class continuations leads to programs with complex control flow, as well as the possibility of expressing powerful constructs such as resumable exceptions. We describe and compare games models for a programming language which includes these features, as well as higher-order references. They are obtained by contrasting methodologies: by annotating sequences of moves with "control pointers" indicating where exceptions are thrown and caught, and by composing the exceptions and continuations monads. The former approach allows an explicit representation of control flow in games for exceptions, and hence a straightforward proof of definability (full abstraction) by factorization, as well as offering the possibility of a semantic approach to control flow analysis of exception-handling. However, establishing soundness of such a concrete and complex model is a non-trivial problem. It may be resolved by establishing a correspondence with the monad semantics, based on erasing explicit exception moves and replacing them with control pointers.Comment: In Proceedings COS 2013, arXiv:1309.092

    The computability path ordering

    Get PDF
    This paper aims at carrying out termination proofs for simply typed higher-order calculi automatically by using ordering comparisons. To this end, we introduce the computability path ordering (CPO), a recursive relation on terms obtained by lifting a precedence on function symbols. A first version, core CPO, is essentially obtained from the higher-order recursive path ordering (HORPO) by eliminating type checks from some recursive calls and by incorporating the treatment of bound variables as in the com-putability closure. The well-foundedness proof shows that core CPO captures the essence of computability arguments \'a la Tait and Girard, therefore explaining its name. We further show that no further type check can be eliminated from its recursive calls without loosing well-foundedness, but for one for which we found no counterexample yet. Two extensions of core CPO are then introduced which allow one to consider: the first, higher-order inductive types; the second, a precedence in which some function symbols are smaller than application and abstraction

    Enacting children's citizenship: developing understandings of how children enact themselves as citizens through actions and acts of citizenship

    Get PDF
    Children have an unsettled relationship with the status of citizenship, being given some rights, responsibilities and opportunities for participation, and being denied others. Yet if citizenship is conceived of as a practice, children can be firmly seen as citizens in the sense that they are social actors, negotiating and contributing to relationships of social interdependence. This article develops understandings of children’s agency in citizenship and some of the different ways in which children’s actions enact them as interdependent citizens. It presents one aspect of the understanding of citizenship generated from research by six groups of marginalised children, aged 5-13, in Wales and France. Synthesising the research groups’ descriptions of activities they associated with the component parts of citizenship with citizenship theory, these children can be seen to engage in actions of citizenship that include making rules of social existence, furthering social good and exercising freedoms to achieve their own rights. Their activities also transgress the boundaries of existing balances of rights, responsibilities and statuses, through their (mis)behaviour, in ways that can be interpreted as Acts of citizenship. In children’s everyday activities, however, the distinction between actions and Acts of citizenship can at times be blurred. This is because recognizing aspects of children’s practices as citizenship is a challenge to dominant definitions of citizenship, and claims a new status for children. Exploring children’s citizenship in these ways has potential for widening understandings of participation and appreciating broader aspects of children’s agency in citizenship
    • …
    corecore