865 research outputs found

    Relaxed lightweight assembly retrieval using vector space model

    Get PDF
    International audienceAssembly searching technologies are important for the improvement of design reusability. However, existing methods require that assemblies possess high-level information, and thus cannot be applied in lightweight assemblies. In this paper, we propose a novel relaxed lightweight assembly retrieval approach based on a vector space model (VSM). By decomposing the assemblies represented in a watertight polygon mesh into bags of parts, and considering the queries as a vague specification of a set of parts, the resilient ranking strategy in VSM is successfully applied in the assembly retrieval. Furthermore, we take the scale-sensitive similarities between parts into the evaluation of matching values, and extend the original VSM to a relaxed matching framework. This framework allows users to input any fuzzy queries, is capable of measuring the results quantitatively, and performs well in retrieving assemblies with specified characteristics. To accelerate the online matching procedure, a typical parts based matching process, as well as a greedy strategy based matching algorithm is presented and integrated in the framework, which makes our system achieve interactive performance. We demonstrate the efficiency and effectiveness of our approach through various experiments on the prototype system

    Lunar Polar Coring Lander

    Get PDF
    Plans to build a lunar base are presently being studied with a number of considerations. One of the most important considerations is qualifying the presence of water on the Moon. The existence of water on the Moon implies that future lunar settlements may be able to use this resource to produce things such as drinking water and rocket fuel. Due to the very high cost of transporting these materials to the Moon, in situ production could save billions of dollars in operating costs of the lunar base. Scientists have suggested that the polar regions of the Moon may contain some amounts of water ice in the regolith. Six possible mission scenarios are suggested which would allow lunar polar soil samples to be collected for analysis. The options presented are: remote sensing satellite, two unmanned robotic lunar coring missions (one is a sample return and one is a data return only), two combined manned and robotic polar coring missions, and one fully manned core retrieval mission. One of the combined manned and robotic missions has been singled out for detailed analysis. This mission proposes sending at least three unmanned robotic landers to the lunar pole to take core samples as deep as 15 meters. Upon successful completion of the coring operations, a manned mission would be sent to retrieve the samples and perform extensive experiments of the polar region. Man's first step in returning to the Moon is recommended to investigate the issue of lunar polar water. The potential benefits of lunar water more than warrant sending either astronauts, robots or both to the Moon before any permanent facility is constructed

    Approaches to lowering the cost of large space telescopes

    Full text link
    New development approaches, including launch vehicles and advances in sensors, computing, and software, have lowered the cost of entry into space, and have enabled a revolution in low-cost, high-risk Small Satellite (SmallSat) missions. To bring about a similar transformation in larger space telescopes, it is necessary to reconsider the full paradigm of space observatories. Here we will review the history of space telescope development and cost drivers, and describe an example conceptual design for a low cost 6.5 m optical telescope to enable new science when operated in space at room temperature. It uses a monolithic primary mirror of borosilicate glass, drawing on lessons and tools from decades of experience with ground-based observatories and instruments, as well as flagship space missions. It takes advantage, as do large launch vehicles, of increased computing power and space-worthy commercial electronics in low-cost active predictive control systems to maintain stability. We will describe an approach that incorporates science and trade study results that address driving requirements such as integration and testing costs, reliability, spacecraft jitter, and wavefront stability in this new risk-tolerant "LargeSat" context.Comment: Presented at SPIE, Optics+Photonics 2023, Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems IV in San Diego, CA, US

    LDEF materials results for spacecraft applications: Executive summary

    Get PDF
    To address the challenges of space environmental effects, NASA designed the Long Duration Exposure Facility (LDEF) for an 18-month mission to expose thousands of samples of candidate materials that might be used on a space station or other orbital spacecraft. LDEF was launched in April 1984 and was to have been returned to Earth in 1985. Changes in mission schedules postponed retrieval until January 1990, after 69 months in orbit. Analyses of the samples recovered from LDEF have provided spacecraft designers and managers with the most extensive data base on space materials phenomena. Many LDEF samples were greatly changed by extended space exposure. Among even the most radially altered samples, NASA and its science teams are finding a wealth of surprising conclusions and tantalizing clues about the effects of space on materials. Many were discussed at the first two LDEF results conferences and subsequent professional papers. The LDEF Materials Results for Spacecraft Applications Conference was convened in Huntsville to discuss implications for spacecraft design. Already, paint and thermal blanket selections for space station and other spacecraft have been affected by LDEF data. This volume synopsizes those results

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs
    corecore