5,565 research outputs found

    Multiclass Data Segmentation using Diffuse Interface Methods on Graphs

    Full text link
    We present two graph-based algorithms for multiclass segmentation of high-dimensional data. The algorithms use a diffuse interface model based on the Ginzburg-Landau functional, related to total variation compressed sensing and image processing. A multiclass extension is introduced using the Gibbs simplex, with the functional's double-well potential modified to handle the multiclass case. The first algorithm minimizes the functional using a convex splitting numerical scheme. The second algorithm is a uses a graph adaptation of the classical numerical Merriman-Bence-Osher (MBO) scheme, which alternates between diffusion and thresholding. We demonstrate the performance of both algorithms experimentally on synthetic data, grayscale and color images, and several benchmark data sets such as MNIST, COIL and WebKB. We also make use of fast numerical solvers for finding the eigenvectors and eigenvalues of the graph Laplacian, and take advantage of the sparsity of the matrix. Experiments indicate that the results are competitive with or better than the current state-of-the-art multiclass segmentation algorithms.Comment: 14 page

    Sum rules for the ground states of the O(1) loop model on a cylinder and the XXZ spin chain

    Full text link
    The sums of components of the ground states of the O(1) loop model on a cylinder or of the XXZ quantum spin chain at Delta=-1/2 (of size L) are expressed in terms of combinatorial numbers. The methods include the introduction of spectral parameters and the use of integrability, a mapping from size L to L+1, and knot-theoretic skein relations.Comment: final version to be publishe

    Ruelle-Perron-Frobenius spectrum for Anosov maps

    Full text link
    We extend a number of results from one dimensional dynamics based on spectral properties of the Ruelle-Perron-Frobenius transfer operator to Anosov diffeomorphisms on compact manifolds. This allows to develop a direct operator approach to study ergodic properties of these maps. In particular, we show that it is possible to define Banach spaces on which the transfer operator is quasicompact. (Information on the existence of an SRB measure, its smoothness properties and statistical properties readily follow from such a result.) In dimension d=2d=2 we show that the transfer operator associated to smooth random perturbations of the map is close, in a proper sense, to the unperturbed transfer operator. This allows to obtain easily very strong spectral stability results, which in turn imply spectral stability results for smooth deterministic perturbations as well. Finally, we are able to implement an Ulam type finite rank approximation scheme thus reducing the study of the spectral properties of the transfer operator to a finite dimensional problem.Comment: 58 pages, LaTe

    Structure of the conservation laws in integrable spin chains with short range interactions

    Get PDF
    We present a detailed analysis of the structure of the conservation laws in quantum integrable chains of the XYZ-type and in the Hubbard model. With the use of the boost operator, we establish the general form of the XYZ conserved charges in terms of simple polynomials in spin variables and derive recursion relations for the relative coefficients of these polynomials. For two submodels of the XYZ chain - namely the XXX and XY cases, all the charges can be calculated in closed form. For the XXX case, a simple description of conserved charges is found in terms of a Catalan tree. This construction is generalized for the su(M) invariant integrable chain. We also indicate that a quantum recursive (ladder) operator can be traced back to the presence of a hamiltonian mastersymmetry of degree one in the classical continuous version of the model. We show that in the quantum continuous limits of the XYZ model, the ladder property of the boost operator disappears. For the Hubbard model we demonstrate the non-existence of a ladder operator. Nevertheless, the general structure of the conserved charges is indicated, and the expression for the terms linear in the model's free parameter for all charges is derived in closed form.Comment: 79 pages in plain TeX plus 4 uuencoded figures; (uses harvmac and epsf

    Network Reconstruction from Intrinsic Noise

    Full text link
    This paper considers the problem of inferring an unknown network of dynamical systems driven by unknown, intrinsic, noise inputs. Equivalently we seek to identify direct causal dependencies among manifest variables only from observations of these variables. For linear, time-invariant systems of minimal order, we characterise under what conditions this problem is well posed. We first show that if the transfer matrix from the inputs to manifest states is minimum phase, this problem has a unique solution irrespective of the network topology. This is equivalent to there being only one valid spectral factor (up to a choice of signs of the inputs) of the output spectral density. If the assumption of phase-minimality is relaxed, we show that the problem is characterised by a single Algebraic Riccati Equation (ARE), of dimension determined by the number of latent states. The number of solutions to this ARE is an upper bound on the number of solutions for the network. We give necessary and sufficient conditions for any two dynamical networks to have equal output spectral density, which can be used to construct all equivalent networks. Extensive simulations quantify the number of solutions for a range of problem sizes. For a slightly simpler case, we also provide an algorithm to construct all equivalent networks from the output spectral density.Comment: 11 pages, submitted to IEEE Transactions on Automatic Contro

    Different approaches to community detection

    Full text link
    A precise definition of what constitutes a community in networks has remained elusive. Consequently, network scientists have compared community detection algorithms on benchmark networks with a particular form of community structure and classified them based on the mathematical techniques they employ. However, this comparison can be misleading because apparent similarities in their mathematical machinery can disguise different reasons for why we would want to employ community detection in the first place. Here we provide a focused review of these different motivations that underpin community detection. This problem-driven classification is useful in applied network science, where it is important to select an appropriate algorithm for the given purpose. Moreover, highlighting the different approaches to community detection also delineates the many lines of research and points out open directions and avenues for future research.Comment: 14 pages, 2 figures. Written as a chapter for forthcoming Advances in network clustering and blockmodeling, and based on an extended version of The many facets of community detection in complex networks, Appl. Netw. Sci. 2: 4 (2017) by the same author
    corecore