785 research outputs found

    Relaxed Softmax for learning from Positive and Unlabeled data

    Full text link
    In recent years, the softmax model and its fast approximations have become the de-facto loss functions for deep neural networks when dealing with multi-class prediction. This loss has been extended to language modeling and recommendation, two fields that fall into the framework of learning from Positive and Unlabeled data. In this paper, we stress the different drawbacks of the current family of softmax losses and sampling schemes when applied in a Positive and Unlabeled learning setup. We propose both a Relaxed Softmax loss (RS) and a new negative sampling scheme based on Boltzmann formulation. We show that the new training objective is better suited for the tasks of density estimation, item similarity and next-event prediction by driving uplifts in performance on textual and recommendation datasets against classical softmax.Comment: 9 pages, 5 figures, 2 tables, published at RecSys 201

    Attention-Based LSTM for Psychological Stress Detection from Spoken Language Using Distant Supervision

    Full text link
    We propose a Long Short-Term Memory (LSTM) with attention mechanism to classify psychological stress from self-conducted interview transcriptions. We apply distant supervision by automatically labeling tweets based on their hashtag content, which complements and expands the size of our corpus. This additional data is used to initialize the model parameters, and which it is fine-tuned using the interview data. This improves the model's robustness, especially by expanding the vocabulary size. The bidirectional LSTM model with attention is found to be the best model in terms of accuracy (74.1%) and f-score (74.3%). Furthermore, we show that distant supervision fine-tuning enhances the model's performance by 1.6% accuracy and 2.1% f-score. The attention mechanism helps the model to select informative words.Comment: Accepted in ICASSP 201

    Relaxed Attention for Transformer Models

    Full text link
    The powerful modeling capabilities of all-attention-based transformer architectures often cause overfitting and - for natural language processing tasks - lead to an implicitly learned internal language model in the autoregressive transformer decoder complicating the integration of external language models. In this paper, we explore relaxed attention, a simple and easy-to-implement smoothing of the attention weights, yielding a two-fold improvement to the general transformer architecture: First, relaxed attention provides regularization when applied to the self-attention layers in the encoder. Second, we show that it naturally supports the integration of an external language model as it suppresses the implicitly learned internal language model by relaxing the cross attention in the decoder. We demonstrate the benefit of relaxed attention across several tasks with clear improvement in combination with recent benchmark approaches. Specifically, we exceed the former state-of-the-art performance of 26.90% word error rate on the largest public lip-reading LRS3 benchmark with a word error rate of 26.31%, as well as we achieve a top-performing BLEU score of 37.67 on the IWSLT14 (DE→\rightarrowEN) machine translation task without external language models and virtually no additional model parameters. Code and models will be made publicly available

    Transfer Learning for Neural Semantic Parsing

    Full text link
    The goal of semantic parsing is to map natural language to a machine interpretable meaning representation language (MRL). One of the constraints that limits full exploration of deep learning technologies for semantic parsing is the lack of sufficient annotation training data. In this paper, we propose using sequence-to-sequence in a multi-task setup for semantic parsing with a focus on transfer learning. We explore three multi-task architectures for sequence-to-sequence modeling and compare their performance with an independently trained model. Our experiments show that the multi-task setup aids transfer learning from an auxiliary task with large labeled data to a target task with smaller labeled data. We see absolute accuracy gains ranging from 1.0% to 4.4% in our in- house data set, and we also see good gains ranging from 2.5% to 7.0% on the ATIS semantic parsing tasks with syntactic and semantic auxiliary tasks.Comment: Accepted for ACL Repl4NLP 201
    • …
    corecore