108 research outputs found

    Interactive Proof Systems

    No full text
    The report is a compilation of lecture notes that were prepared during the course ``Interactive Proof Systems'' given by the authors at Tata Institute of Fundamental Research, Bombay. These notes were also used for a short course ``Interactive Proof Systems'' given by the second author at MPI, Saarbruecken. The objective of the course was to study the recent developments in complexity theory about interactive proof systems, which led to some surprising consequences on nonapproximability of NP hard problems. We start the course with an introduction to complexity theory and covered some classical results related with circuit complexity, randomizations and counting classes, notions which are either part of the definitions of interactive proof systems or are used in proving the above results. We define arthur merlin games and interactive proof systems, which are equivalent formulations of the notion of interactive proofs and show their equivalence to each other and to the complexity class PSPACE. We introduce probabilistically checkable proofs, which are special forms of interactive proofs and show through sequence of intermediate results that the class NP has probabilistically checkable proofs of very special form and very small complexity. Using this we conclude that several NP hard problems are not even weakly approximable in polynomial time unless P = NP

    Communication Complexity of Set-Disjointness for All Probabilities

    Get PDF
    We study set-disjointness in a generalized model of randomized two-party communication where the probability of acceptance must be at least alpha(n) on yes-inputs and at most beta(n) on no-inputs, for some functions alpha(n)>beta(n). Our main result is a complete characterization of the private-coin communication complexity of set-disjointness for all functions alpha and beta, and a near-complete characterization for public-coin protocols. In particular, we obtain a simple proof of a theorem of Braverman and Moitra (STOC 2013), who studied the case where alpha=1/2+epsilon(n) and beta=1/2-epsilon(n). The following contributions play a crucial role in our characterization and are interesting in their own right. (1) We introduce two communication analogues of the classical complexity class that captures small bounded-error computations: we define a "restricted" class SBP (which lies between MA and AM) and an "unrestricted" class USBP. The distinction between them is analogous to the distinction between the well-known communication classes PP and UPP. (2) We show that the SBP communication complexity is precisely captured by the classical corruption lower bound method. This sharpens a theorem of Klauck (CCC 2003). (3) We use information complexity arguments to prove a linear lower bound on the USBP complexity of set-disjointness

    Impossibility of Succinct Quantum Proofs for Collision-Freeness

    Get PDF
    We show that any quantum algorithm to decide whether a function f:\left[n\right] \rightarrow\left[ n\right] is a permutation or far from a permutation\ must make \Omega\left( n^{1/3}/w\right) queries to f, even if the algorithm is given a w-qubit quantum witness in support of f being a permutation. This implies that there exists an oracle A such that \mathsfSZKA\mathsfQMAA , answering an eight-year-old open question of the author. Indeed, we show that relative to some oracle, \mathsfSZK is not in the counting class \mathsfA\mathsf0\mathsfPP defined by Vyalyi. The proof is a fairly simple extension of the quantum lower bound for the collision problem..National Science Foundation (U.S.) (grant 0844626)United States. Defense Advanced Research Projects Agency (YFA grant

    Super-Polynomial Versus Half-Exponential Circuit Size in the Exponential Hierarchy

    Get PDF
    Lower bounds on circuit size were previously established for functions in Sigma^p_2, ZPP^NP, Sigma^exp_2, ZPEXP^NP and MA_exp. We investigatethe general question: Given a time bound f(n). What is the best circuit size lower bound that can be shown for the classes MA-TIME[f],ZP-TIME^NP[f], . . . using the techniques currently known? For theclasses MA_exp, ZPEXP^NP, and Sigma^exp_2 , the answer we get is "half-exponential". Informally, a function f is said to be half-exponential iff composed with itself is exponentia

    On Oracles and Algorithmic Methods for Proving Lower Bounds

    Get PDF
    This paper studies the interaction of oracles with algorithmic approaches to proving circuit complexity lower bounds, establishing new results on two different kinds of questions. 1) We revisit some prominent open questions in circuit lower bounds, and provide a clean way of viewing them as circuit upper bound questions. Let Missing-String be the (total) search problem of producing a string that does not appear in a given list L containing M bit-strings of length N, where M < 2?. We show in a generic way how algorithms and uniform circuits (from restricted classes) for Missing-String imply complexity lower bounds (and in some cases, the converse holds as well). We give a local algorithm for Missing-String, which can compute any desired output bit making very few probes into the input, when the number of strings M is small enough. We apply this to prove a new nearly-optimal (up to oracles) time hierarchy theorem with advice. We show that the problem of constructing restricted uniform circuits for Missing-String is essentially equivalent to constructing functions without small non-uniform circuits, in a relativizing way. For example, we prove that small uniform depth-3 circuits for Missing-String would imply exponential circuit lower bounds for ?? EXP, and depth-3 lower bounds for Missing-String would imply non-trivial circuits (relative to an oracle) for ?? EXP problems. Both conclusions are longstanding open problems in circuit complexity. 2) It has been known since Impagliazzo, Kabanets, and Wigderson [JCSS 2002] that generic derandomizations improving subexponentially over exhaustive search would imply lower bounds such as NEXP ? ? ?/poly. Williams [SICOMP 2013] showed that Circuit-SAT algorithms running barely faster than exhaustive search would imply similar lower bounds. The known proofs of such results do not relativize (they use techniques from interactive proofs/PCPs). However, it has remained open whether there is an oracle under which the generic implications from circuit-analysis algorithms to circuit lower bounds fail. Building on an oracle of Fortnow, we construct an oracle relative to which the circuit approximation probability problem (CAPP) is in ?, yet EXP^{NP} has polynomial-size circuits. We construct an oracle relative to which SAT can be solved in "half-exponential" time, yet exponential time (EXP) has polynomial-size circuits. Improving EXP to NEXP would give an oracle relative to which ?? ? has "half-exponential" size circuits, which is open. (Recall it is known that ?? ? is not in "sub-half-exponential" size, and the proof relativizes.) Moreover, the running time of the SAT algorithm cannot be improved: relative to all oracles, if SAT is in "sub-half-exponential" time then EXP does not have polynomial-size circuits

    Uniform hardness versus randomness tradeoffs for Arthur-Merlin games

    Full text link

    A Hierarchy Theorem for Interactive Proofs of Proximity

    Get PDF
    The number of rounds, or round complexity, used in an interactive protocol is a fundamental resource. In this work we consider the significance of round complexity in the context of Interactive Proofs of Proximity (IPPs). Roughly speaking, IPPs are interactive proofs in which the verifier runs in sublinear time and is only required to reject inputs that are far from the language. Our main result is a round hierarchy theorem for IPPs, showing that the power of IPPs grows with the number of rounds. More specifically, we show that there exists a gap function g(r) = Theta(r^2) such that for every constant r geq 1 there exists a language that (1) has a g(r)-round IPP with verification time t=t(n,r) but (2) does not have an r-round IPP with verification time t (or even verification time t\u27=poly(t)). In fact, we prove a stronger result by exhibiting a single language L such that, for every constant r geq 1, there is an O(r^2)-round IPP for L with t=n^{O(1/r)} verification time, whereas the verifier in any r-round IPP for L must run in time at least t^{100}. Moreover, we show an IPP for L with a poly-logarithmic number of rounds and only poly-logarithmic erification time, yielding a sub-exponential separation between the power of constant-round IPPs versus general (unbounded round) IPPs. From our hierarchy theorem we also derive implications to standard interactive proofs (in which the verifier can run in polynomial time). Specifically, we show that the round reduction technique of Babai and Moran (JCSS, 1988) is (almost) optimal among all blackbox transformations, and we show a connection to the algebrization framework of Aaronson and Wigderson (TOCT, 2009)
    • …
    corecore