698 research outputs found

    Mathematical Methods in Quantum Chemistry

    Get PDF
    The field of quantum chemistry is concerned with the modelling and simulation of the behaviour of molecular systems on the basis of the fundamental equations of quantum mechanics. Since these equations exhibit an extreme case of the curse of dimensionality (the Schrödinger equation for N electrons being a partial differential equation on R3N ), the quantum-chemical simulation of even moderate-size molecules already requires highly sophisticated model-reduction, approximation, and simulation techniques. The workshop brought together selected quantum chemists and physicists, and the growing community of mathematicians working in the area, to report and discuss recent advances on topics such as coupled-cluster theory, direct approximation schemes in full configuration-interaction (FCI) theory, interacting Green’s functions, foundations and computational aspects of densityfunctional theory (DFT), low-rank tensor methods, quantum chemistry in the presence of a strong magnetic field, and multiscale coupling of quantum simulations

    Tensor Product Multiscale Many-Particle Spaces with Finite-Order Weights for the Electronic Schrödinger Equation

    Get PDF
    We study tensor product multiscale many-particle spaces with finite-order weights and their application for the electronic Schrödinger equation. Any numerical solution of the electronic Schrödinger equation using conventional discretization schemes is impossible due to its high dimensionality. Therefore, typically Monte Carlo methods (VMC/DMC) or nonlinear model approximations like Hartree-Fock (HF), coupled cluster (CC) or density functional theory (DFT) are used. In this work we develop and implement in parallel a numerical method based on adaptive sparse grids and a particle-wise subspace splitting with respect to one-particle functions which stem from a nonlinear rank-1 approximation. Sparse grids allow to overcome the exponential complexity exhibited by conventional discretization procedures and deliver a convergent numerical approach with guaranteed convergence rates. In particular, the introduced weighted many-particle tensor product multiscale approximation spaces include the common configuration interaction (CI) spaces as a special case. To realize our new approach, we first introduce general many-particle Sobolev spaces, which particularly include the standard Sobolev spaces as well as Sobolev spaces of dominated mixed smoothness. For this novel variant of sparse grid spaces we show estimates for the approximation and complexity orders with respect to the smoothness and decay parameters. With known regularity properties of the electronic wave function it follows that, up to logarithmic terms, the convergence rate is independent of the number of electrons and almost the same as in the two-electron case. However, besides the rate, also the dependence of the complexity constants on the number of electrons plays an important role for a truly practical method. Based on a splitting of the one-particle space we construct a subspace splitting of the many-particle space, which particularly includes the known ANOVA decomposition, the HDMR decomposition and the CI decomposition as special cases. Additionally, we introduce weights for a restriction of this subspace splitting. In this way weights of finite order q lead to many-particle spaces in which the problem of an approximation of an N-particle function reduces to the problem of the approximation of q-particle functions. To obtain as small as possible constants with respect to the cost complexity, we introduce a heuristic adaptive scheme to build a sequence of finite-dimensional subspaces of a weighted tensor product multiscale many-particle approximation space. Furthermore, we construct a multiscale Gaussian frame and apply Gaussians and modulated Gaussians for the nonlinear rank-1 approximation. In this way, all matrix entries of the corresponding discrete eigenvalue problem can be computed in terms of analytic formulae for the one and two particle operator integrals. Finally, we apply our novel approach to small atomic and diatomic systems with up to 6 electrons (18 space dimensions). The numerical results demonstrate that our new method indeed allows for convergence with expected rates.Tensorprodukt-Multiskalen-Mehrteilchenräume mit Gewichten endlicher Ordnung für die elektronische Schrödingergleichung In der vorliegenden Arbeit beschäftigen wir uns mit gewichteten Tensorprodukt-Multiskalen-Mehrteilchen-Approximationsräumen und deren Anwendung zur numerischen Lösung der elektronischen Schrödinger-Gleichung. Aufgrund der hohen Problemdimension ist eine direkte numerische Lösung der elektronischen Schrödinger-Gleichung mit Standard-Diskretisierungsverfahren zur linearen Approximation unmöglich, weshalb üblicherweise Monte Carlo Methoden (VMC/DMC) oder nichtlineare Modellapproximationen wie Hartree-Fock (HF), Coupled Cluster (CC) oder Dichtefunktionaltheorie (DFT) verwendet werden. In dieser Arbeit wird eine numerische Methode auf Basis von adaptiven dünnen Gittern und einer teilchenweisen Unterraumzerlegung bezüglich Einteilchenfunktionen aus einer nichtlinearen Rang-1 Approximation entwickelt und für parallele Rechnersysteme implementiert. Dünne Gitter vermeiden die in der Dimension exponentielle Komplexität üblicher Diskretisierungsmethoden und führen zu einem konvergenten numerischen Ansatz mit garantierter Konvergenzrate. Zudem enthalten unsere zugrunde liegenden gewichteten Mehrteilchen Tensorprodukt-Multiskalen-Approximationsräume die bekannten Configuration Interaction (CI) Räume als Spezialfall. Zur Konstruktion unseres Verfahrens führen wir zunächst allgemeine Mehrteilchen-Sobolevräume ein, welche die Standard-Sobolevräume sowie Sobolevräume mit dominierender gemischter Glattheit beinhalten. Wir analysieren die Approximationseigenschaften und schätzen Konvergenzraten und Kostenkomplexitätsordnungen in Abhängigkeit der Glattheitsparameter und Abfalleigenschaften ab. Mit Hilfe bekannter Regularitätseigenschaften der elektronischen Wellenfunktion ergibt sich, dass die Konvergenzrate bis auf logarithmische Terme unabhängig von der Zahl der Elektronen und fast identisch mit der Konvergenzrate im Fall von zwei Elektronen ist. Neben der Rate spielt allerdings die Abhängigkeit der Konstanten in der Kostenkomplexität von der Teilchenzahl eine wichtige Rolle. Basierend auf Zerlegungen des Einteilchenraumes konstruieren wir eine Unterraumzerlegung des Mehrteilchenraumes, welche insbesondere die bekannte ANOVA-Zerlegung, die HDMR-Zerlegung sowie die CI-Zerlegung als Spezialfälle beinhaltet. Eine zusätzliche Gewichtung der entsprechenden Unterräume mit Gewichten von endlicher Ordnung q führt zu Mehrteilchenräumen, in denen sich das Approximationsproblem einer N-Teilchenfunktion zu Approximationsproblemen von q-Teilchenfunktionen reduziert. Mit dem Ziel, Konstanten möglichst kleiner Größe bezüglich der Kostenkomplexität zu erhalten, stellen wir ein heuristisches adaptives Verfahren zur Konstruktion einer Sequenz von endlich-dimensionalen Unterräumen eines gewichteten Mehrteilchen-Tensorprodukt-Multiskalen-Approximationsraumes vor. Außerdem konstruieren wir einen Frame aus Multiskalen-Gauss-Funktionen und verwenden Einteilchenfunktionen im Rahmen der Rang-1 Approximation in der Form von Gauss- und modulierten-Gauss-Funktionen. Somit können die zur Aufstellung der Matrizen des zugehörigen diskreten Eigenwertproblems benötigten Ein- und Zweiteilchenintegrale analytisch berechnet werden. Schließlich wenden wir unsere Methode auf kleine Atome und Moleküle mit bis zu sechs Elektronen (18 Raumdimensionen) an. Die numerischen Resultate zeigen, dass sich die aus der Theorie zu erwartenden Konvergenzraten auch praktisch ergeben

    Simulation techniques for cosmological simulations

    Get PDF
    Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.Comment: 42 pages, 16 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 12; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Atomic imaging of complex molecular

    Get PDF
    One of the significant challenges of modern science is to track and image chemical reactions as they occur. The molecular movies, the precise spatiotemporal tracking of changes in their molecular dynamics, will provide a wealth of actionable insights into how nature works. Experimental techniques need to resolve the relevant molecular motions in atomic resolution, which includes (10^(-10) m) spatial dimensions and few- to hundreds of femtoseconds (10^(-15) s) temporal resolution. Laser-induced electron diffraction (LIED), a laser-based electron diffraction technique, images even singular molecular structures with combined sub-atomic picometre and femto-to attosecond spatiotemporal resolution. Here, a laser-driven attosecond electron wave packet scatters the parent’s ion after photoionization. The measured diffraction pattern of the electrons provides a unique fingerprint of molecular structure. Taking snapshots of molecular dynamics via the LIED technique is proved to be a potent tool to understand the intertwining of molecules and how they react, change, break, bend, etc. This thesis is especially interested in exploiting advanced LIED imaging techniques to retrieve large complex molecular structures. So far, LIED has successfully retrieved molecular information from small gas-phase molecules like oxygen (O2), nitrogen (N2), acetylene (C2H2), carbon disulfide (CS2), ammonia (NH3) and carbonyl sulfide (OCS). Nevertheless, most biology interesting organic molecules typically exist as liquid or solid at room temperature. In order to accomplish the final goal to extract these larger complex molecular structural information, we need to overcome two main challenges: delivering the liquid or solid samples as a gas-phase jet with sufficient gas density in the experiment and developing a new retrieval algorithm to extract the geometrical information from the diffraction pattern. We tested one of the most simple liquid molecules - water H2O in the reaction chamber as a primary step. We traced the variation of H2O+ cation structure under the different electric fields. To solve the problem of unsatisfactory gas density, we present a novel delivery system utilizing Tesla valves that generates more than an order-of-magnitude denser gaseous beam. Machine learning is well qualified to solve difficulties with manifold degrees of freedom. We use convolutional neural networks (CNNs) combined with LIED techniques to enable atomic-resolution imaging of the complex chiral molecule Fenchone (C10H16O).Uno de los desafíos importantes de la ciencia moderna es rastrear y obtener imágenes de las reacciones químicas a medida que ocurren. Las películas moleculares, el seguimiento espaciotemporal preciso de los cambios en su dinámica molecular, proporcionarán una gran cantidad de conocimientos prácticos sobre cómo funciona la naturaleza. Las técnicas experimentales necesitan resolver los movimientos moleculares relevantes en resolución atómica, que incluye (101010^{-10} m) dimensional espacial y resolución temporal de pocos a cientos de femtosegundos (101510^{-15} s). La difracción de electrones inducida por láser (LIED-Laser-induced electron diffraction), una técnica de difracción de electrones basada en láser, crea imágenes incluso de estructuras moleculares singulares con una resolución espaciotemporal subatómica combinada de picómetro y femto a attosegundo. Aquí, un paquete de ondas de electrones de attosegundos impulsado por láser dispersa el ion del padre después de la fotoionización. El patrón de difracción medido de los electrones proporciona una huella única de la estructura molecular. Se ha demostrado que tomar instantáneas de la dinámica molecular a través de la técnica LIED es una herramienta potente para comprender el entrelazamiento de las moléculas y cómo reaccionan, cambian, se rompen, se doblan, etc. Esta tesis está especialmente interesada en explotar técnicas avanzadas de imagen LIED para recuperar estructuras moleculares grandes y complejas. Hasta ahora, LIED ha recuperado con éxito información molecular de pequeñas moléculas en fase gaseosa como oxígeno (O2), nitrógeno (N2), acetileno (C2H2), disulfuro de carbono (CS2), amoníaco (NH3) y sulfuro de carbonilo (OCS). Sin embargo, la mayoría de las moléculas orgánicas interesantes para la biología suelen existir como líquidas o sólidas a temperatura ambiente. Para lograr el objetivo final de extraer esta información estructural molecular compleja más grande, debemos superar dos desafíos principales: entregar las muestras líquidas o sólidas como un chorro de fase gaseosa con suficiente densidad de gas en el experimento y desarrollar un nuevo algoritmo de recuperación para extraer la información geométrica del patrón de difracción. Probamos una de las moléculas líquidas más simples: agua H2O en la cámara de reacción como primer paso. Trazamos la variación de la estructura del catión H2O+ bajo los diferentes campos eléctricos. Para resolver el problema de la densidad de gas insatisfactoria, presentamos un novedoso sistema de suministro que utiliza válvulas Tesla que genera más de un haz gaseoso más denso en un orden de magnitud. El aprendizaje automático está bien calificado para resolver dificultades con múltiples grados de libertad. Utilizamos redes neuronales convolucionales (CNN-convolutional neural networks) combinadas con técnicas LIED para permitir imágenes de resolución atómica de la molécula quiral compleja Fenchone (C10H16OPostprint (published version
    corecore