355 research outputs found

    Concepts and Techniques for Flexible and Effective Music Data Management

    Get PDF

    Privacy-preserving information hiding and its applications

    Get PDF
    The phenomenal advances in cloud computing technology have raised concerns about data privacy. Aided by the modern cryptographic techniques such as homomorphic encryption, it has become possible to carry out computations in the encrypted domain and process data without compromising information privacy. In this thesis, we study various classes of privacy-preserving information hiding schemes and their real-world applications for cyber security, cloud computing, Internet of things, etc. Data breach is recognised as one of the most dreadful cyber security threats in which private data is copied, transmitted, viewed, stolen or used by unauthorised parties. Although encryption can obfuscate private information against unauthorised viewing, it may not stop data from illegitimate exportation. Privacy-preserving Information hiding can serve as a potential solution to this issue in such a manner that a permission code is embedded into the encrypted data and can be detected when transmissions occur. Digital watermarking is a technique that has been used for a wide range of intriguing applications such as data authentication and ownership identification. However, some of the algorithms are proprietary intellectual properties and thus the availability to the general public is rather limited. A possible solution is to outsource the task of watermarking to an authorised cloud service provider, that has legitimate right to execute the algorithms as well as high computational capacity. Privacypreserving Information hiding is well suited to this scenario since it is operated in the encrypted domain and hence prevents private data from being collected by the cloud. Internet of things is a promising technology to healthcare industry. A common framework consists of wearable equipments for monitoring the health status of an individual, a local gateway device for aggregating the data, and a cloud server for storing and analysing the data. However, there are risks that an adversary may attempt to eavesdrop the wireless communication, attack the gateway device or even access to the cloud server. Hence, it is desirable to produce and encrypt the data simultaneously and incorporate secret sharing schemes to realise access control. Privacy-preserving secret sharing is a novel research for fulfilling this function. In summary, this thesis presents novel schemes and algorithms, including: • two privacy-preserving reversible information hiding schemes based upon symmetric cryptography using arithmetic of quadratic residues and lexicographic permutations, respectively. • two privacy-preserving reversible information hiding schemes based upon asymmetric cryptography using multiplicative and additive privacy homomorphisms, respectively. • four predictive models for assisting the removal of distortions inflicted by information hiding based respectively upon projection theorem, image gradient, total variation denoising, and Bayesian inference. • three privacy-preserving secret sharing algorithms with different levels of generality

    Design Techniques for Energy-Quality Scalable Digital Systems

    Get PDF
    Energy efficiency is one of the key design goals in modern computing. Increasingly complex tasks are being executed in mobile devices and Internet of Things end-nodes, which are expected to operate for long time intervals, in the orders of months or years, with the limited energy budgets provided by small form-factor batteries. Fortunately, many of such tasks are error resilient, meaning that they can toler- ate some relaxation in the accuracy, precision or reliability of internal operations, without a significant impact on the overall output quality. The error resilience of an application may derive from a number of factors. The processing of analog sensor inputs measuring quantities from the physical world may not always require maximum precision, as the amount of information that can be extracted is limited by the presence of external noise. Outputs destined for human consumption may also contain small or occasional errors, thanks to the limited capabilities of our vision and hearing systems. Finally, some computational patterns commonly found in domains such as statistics, machine learning and operational research, naturally tend to reduce or eliminate errors. Energy-Quality (EQ) scalable digital systems systematically trade off the quality of computations with energy efficiency, by relaxing the precision, the accuracy, or the reliability of internal software and hardware components in exchange for energy reductions. This design paradigm is believed to offer one of the most promising solutions to the impelling need for low-energy computing. Despite these high expectations, the current state-of-the-art in EQ scalable design suffers from important shortcomings. First, the great majority of techniques proposed in literature focus only on processing hardware and software components. Nonetheless, for many real devices, processing contributes only to a small portion of the total energy consumption, which is dominated by other components (e.g. I/O, memory or data transfers). Second, in order to fulfill its promises and become diffused in commercial devices, EQ scalable design needs to achieve industrial level maturity. This involves moving from purely academic research based on high-level models and theoretical assumptions to engineered flows compatible with existing industry standards. Third, the time-varying nature of error tolerance, both among different applications and within a single task, should become more central in the proposed design methods. This involves designing “dynamic” systems in which the precision or reliability of operations (and consequently their energy consumption) can be dynamically tuned at runtime, rather than “static” solutions, in which the output quality is fixed at design-time. This thesis introduces several new EQ scalable design techniques for digital systems that take the previous observations into account. Besides processing, the proposed methods apply the principles of EQ scalable design also to interconnects and peripherals, which are often relevant contributors to the total energy in sensor nodes and mobile systems respectively. Regardless of the target component, the presented techniques pay special attention to the accurate evaluation of benefits and overheads deriving from EQ scalability, using industrial-level models, and on the integration with existing standard tools and protocols. Moreover, all the works presented in this thesis allow the dynamic reconfiguration of output quality and energy consumption. More specifically, the contribution of this thesis is divided in three parts. In a first body of work, the design of EQ scalable modules for processing hardware data paths is considered. Three design flows are presented, targeting different technologies and exploiting different ways to achieve EQ scalability, i.e. timing-induced errors and precision reduction. These works are inspired by previous approaches from the literature, namely Reduced-Precision Redundancy and Dynamic Accuracy Scaling, which are re-thought to make them compatible with standard Electronic Design Automation (EDA) tools and flows, providing solutions to overcome their main limitations. The second part of the thesis investigates the application of EQ scalable design to serial interconnects, which are the de facto standard for data exchanges between processing hardware and sensors. In this context, two novel bus encodings are proposed, called Approximate Differential Encoding and Serial-T0, that exploit the statistical characteristics of data produced by sensors to reduce the energy consumption on the bus at the cost of controlled data approximations. The two techniques achieve different results for data of different origins, but share the common features of allowing runtime reconfiguration of the allowed error and being compatible with standard serial bus protocols. Finally, the last part of the manuscript is devoted to the application of EQ scalable design principles to displays, which are often among the most energy- hungry components in mobile systems. The two proposals in this context leverage the emissive nature of Organic Light-Emitting Diode (OLED) displays to save energy by altering the displayed image, thus inducing an output quality reduction that depends on the amount of such alteration. The first technique implements an image-adaptive form of brightness scaling, whose outputs are optimized in terms of balance between power consumption and similarity with the input. The second approach achieves concurrent power reduction and image enhancement, by means of an adaptive polynomial transformation. Both solutions focus on minimizing the overheads associated with a real-time implementation of the transformations in software or hardware, so that these do not offset the savings in the display. For each of these three topics, results show that the aforementioned goal of building EQ scalable systems compatible with existing best practices and mature for being integrated in commercial devices can be effectively achieved. Moreover, they also show that very simple and similar principles can be applied to design EQ scalable versions of different system components (processing, peripherals and I/O), and to equip these components with knobs for the runtime reconfiguration of the energy versus quality tradeoff

    Audio computing in the wild: frameworks for big data and small computers

    Get PDF
    This dissertation presents some machine learning algorithms that are designed to process as much data as needed while spending the least possible amount of resources, such as time, energy, and memory. Examples of those applications, but not limited to, can be a large-scale multimedia information retrieval system where both queries and the items in the database are noisy signals; collaborative audio enhancement from hundreds of user-created clips of a music concert; an event detection system running in a small device that has to process various sensor signals in real time; a lightweight custom chipset for speech enhancement on hand-held devices; instant music analysis engine running on smartphone apps. In all those applications, efficient machine learning algorithms are supposed to achieve not only a good performance, but also a great resource-efficiency. We start from some efficient dictionary-based single-channel source separation algorithms. We can train this kind of source-specific dictionaries by using some matrix factorization or topic modeling, whose elements form a representative set of spectra for the particular source. During the test time, the system estimates the contribution of the participating dictionary items for an unknown mixture spectrum. In this way we can estimate the activation of each source separately, and then recover the source of interest by using that particular source's reconstruction. There are some efficiency issues during this procedure. First off, searching for the optimal dictionary size is time consuming. Although for some very common types of sources, e.g. English speech, we know the optimal rank of the model by trial and error, it is hard to know in advance as to what is the optimal number of dictionary elements for the unknown sources, which are usually modeled during the test time in the semi-supervised separation scenarios. On top of that, when it comes to the non-stationary unknown sources, we had better maintain a dictionary that adapts its size and contents to the change of the source's nature. In this online semi-supervised separation scenario, a mechanism that can efficiently learn the optimal rank is helpful. To this end, a deflation method is proposed for modeling this unknown source with a nonnegative dictionary whose size is optimal. Since it has to be done during the test time, the deflation method that incrementally adds up new dictionary items shows better efficiency than a corresponding na\"ive approach where we simply try a bunch of different models. We have another efficiency issue when we are to use a large dictionary for better separation. It has been known that considering the manifold of the training data can help enhance the performance for the separation. This is because of the symptom that the usual manifold-ignorant convex combination models, such as from low-rank matrix decomposition or topic modeling, tend to result in ambiguous regions in the source-specific subspace defined by the dictionary items as the bases. For example, in those ambiguous regions, the original data samples cannot reside. Although some source separation techniques that respect data manifold could increase the performance, they call for more memory and computational resources due to the fact that the models call for larger dictionaries and involve sparse coding during the test time. This limitation led the development of hashing-based encoding of the audio spectra, so that some computationally heavy routines, such as nearest neighbor searches for sparse coding, can be performed in a cheaper bit-wise fashion. Matching audio signals can be challenging as well, especially if the signals are noisy and the matching task involves a big amount of signals. If it is an information retrieval application, for example, the bigger size of the data leads to a longer response time. On top of that, if the signals are defective, we have to perform the enhancement or separation job in the first place before matching, or we might need a matching mechanism that is robust to all those different kinds of artifacts. Likewise, the noisy nature of signals can add an additional complexity to the system. In this dissertation we will also see some compact integer (and eventually binary) representations for those matching systems. One of the possible compact representations would be a hashing-based matching method, where we can employ a particular kind of hash functions to preserve the similarity among original signals in the hash code domain. We will see that a variant of Winner Take All hashing can provide Hamming distance from noise-robust binary features, and that matching using the hash codes works well for some keyword spotting tasks. From the fact that some landmark hashes (e.g. local maxima from non-maximum suppression on the magnitudes of a mel-scaled spectrogram) can also robustly represent the time-frequency domain signal efficiently, a matrix decomposition algorithm is also proposed to take those irregular sparse matrices as input. Based on the assumption that the number of landmarks is a lot smaller than the number of all the time-frequency coefficients, we can think of this matching algorithm efficient if it operates entirely on the landmark representation. On the contrary to the usual landmark matching schemes, where matching is defined rigorously, we see the audio matching problem as soft matching where we find a similar constellation of landmarks to the query. In order to perform this soft matching job, the landmark positions are smoothed by a fixed-width Gaussian caps, with which the matching job is reduced down to calculating the amount of overlaps in-between those Gaussians. The Gaussian-based density approximation is also useful when we perform decomposition on this landmark representation, because otherwise the landmarks are usually too sparse to perform an ordinary matrix factorization algorithm, which are originally for a dense input matrix. We also expand this concept to the matrix deconvolution problem as well, where we see the input landmark representation of a source as a two-dimensional convolution between a source pattern and its corresponding sparse activations. If there are more than one source, as a noisy signal, we can think of this problem as factor deconvolution where the mixture is the combination of all the source-specific convolutions. The dissertation also covers Collaborative Audio Enhancement (CAE) algorithms that aim to recover the dominant source at a sound scene (e.g. music signals of a concert rather than the noise from the crowd) from multiple low-quality recordings (e.g. Youtube video clips uploaded by the audience). CAE can be seen as crowdsourcing a recording job, which needs a substantial amount of denoising effort afterward, because the user-created recordings might have been contaminated with various artifacts. In the sense that the recordings are from not-synchronized heterogenous sensors, we can also think of CAE as big ad-hoc sensor array processing. In CAE, each recording is assumed to be uniquely corrupted by a specific frequency response of the microphone, an aggressive audio coding algorithm, interference, band-pass filtering, clipping, etc. To consolidate all these recordings and come up with an enhanced audio, Probabilistic Latent Component Sharing (PLCS) has been proposed as a method of simultaneous probabilistic topic modeling on synchronized input signals. In PLCS, some of the parameters are fixed to be same during and after the learning process to capture common audio content, while the rest of the parameters are for the unwanted recording-specific interference and artifacts. We can speed up PLCS by incorporating a hashing-based nearest neighbor search so that at every EM iteration PLCS can be applied only to a small number of recordings that are closest to the current source estimation. Experiments on a small simulated CAE setup shows that the proposed PLCS can improve the sound quality from variously contaminated recordings. The nearest neighbor search technique during PLCS provides sensible speed-up at larger scaled experiments (up to 1000 recordings). Finally, to describe an extremely optimized deep learning deployment system, Bitwise Neural Networks (BNN) will be also discussed. In the proposed BNN, all the input, hidden, and output nodes are binaries (+1 and -1), and so are all the weights and bias. Consequently, the operations on them during the test time are defined with Boolean algebra, too. BNNs are spatially and computationally efficient in implementations, since (a) we represent a real-valued sample or parameter with a bit (b) the multiplication and addition correspond to bitwise XNOR and bit-counting, respectively. Therefore, BNNs can be used to implement a deep learning system in a resource-constrained environment, so that we can deploy a deep learning system on small devices without using up the power, memory, CPU clocks, etc. The training procedure for BNNs is based on a straightforward extension of backpropagation, which is characterized by the use of the quantization noise injection scheme, and the initialization strategy that learns a weight-compressed real-valued network only for the initialization purpose. Some preliminary results on the MNIST dataset and speech denoising demonstrate that a straightforward extension of backpropagation can successfully train BNNs whose performance is comparable while necessitating vastly fewer computational resources

    Ontology-based Search Algorithms over Large-Scale Unstructured Peer-to-Peer Networks

    Get PDF
    Peer-to-Peer(P2P) systems have emerged as a promising paradigm to structure large scale distributed systems. They provide a robust, scalable and decentralized way to share and publish data.The unstructured P2P systems have gained much popularity in recent years for their wide applicability and simplicity. However efficient resource discovery remains a fundamental challenge for unstructured P2P networks due to the lack of a network structure. To effectively harness the power of unstructured P2P systems, the challenges in distributed knowledge management and information search need to be overcome. Current attempts to solve the problems pertaining to knowledge management and search have focused on simple term based routing indices and keyword search queries. Many P2P resource discovery applications will require more complex query functionality, as users will publish semantically rich data and need efficiently content location algorithms that find target content at moderate cost. Therefore, effective knowledge and data management techniques and search tools for information retrieval are imperative and lasting. In my dissertation, I present a suite of protocols that assist in efficient content location and knowledge management in unstructured Peer-to-Peer overlays. The basis of these schemes is their ability to learn from past peer interactions and increasing their performance with time.My work aims to provide effective and bandwidth-efficient searching and data sharing in unstructured P2P environments. A suite of algorithms which provide peers in unstructured P2P overlays with the state necessary in order to efficiently locate, disseminate and replicate objects is presented. Also, Existing approaches to federated search are adapted and new methods are developed for semantic knowledge representation, resource selection, and knowledge evolution for efficient search in dynamic and distributed P2P network environments. Furthermore,autonomous and decentralized algorithms that reorganizes an unstructured network topology into a one with desired search-enhancing properties are proposed in a network evolution model to facilitate effective and efficient semantic search in dynamic environments

    Privacy-preserving ranked search over encrypted cloud data

    Get PDF
    Search over encrypted data recently became a critical operation that raised a considerable amount of interest in both academia and industry, especially as outsourcing sensitive data to cloud proves to be a strong trend to benefit from the unmatched storage and computing capacities thereof. Indeed, privacy-preserving search over encrypted data, an apt term to address privacy related issues concomitant in outsourcing sensitive data, has been widely investigated in the literature under different models and assumptions. Although its benefits are welcomed, privacy is still a remaining concern that needs to be addressed. Some of those privacy issues can be summarized as: submitted search terms and their frequencies, returned responses and their relevancy to the query, and retrieved data items may all contain sensitive information about the users. In this thesis, we propose two di erent multi-keyword search schemes that ensure users' privacy against both external adversaries including other authorized users and cloud server itself. The proposed schemes use cryptographic techniques as well as query and response randomization. Provided that the security and randomization parameters are appropriately chosen, both the search terms in the queries and the returned responses are protected against privacy violations. The scheme implements strict security and privacy requirements that essentially can hide similarities between the queries that include the same keywords. One of the main advantages of all the proposed methods in this work is the capability of multi-keyword search in a single query. We also incorporate effective ranking capabilities in the proposed schemes that enable user to retrieve only the top matching results. Our comprehensive analytical study and extensive experiments using both real and synthetic data sets demonstrate that the proposed schemes are privacy-preserving, effective, and highly efficient

    Integer Sparse Distributed Memory and Modular Composite Representation

    Get PDF
    Challenging AI applications, such as cognitive architectures, natural language understanding, and visual object recognition share some basic operations including pattern recognition, sequence learning, clustering, and association of related data. Both the representations used and the structure of a system significantly influence which tasks and problems are most readily supported. A memory model and a representation that facilitate these basic tasks would greatly improve the performance of these challenging AI applications.Sparse Distributed Memory (SDM), based on large binary vectors, has several desirable properties: auto-associativity, content addressability, distributed storage, robustness over noisy inputs that would facilitate the implementation of challenging AI applications. Here I introduce two variations on the original SDM, the Extended SDM and the Integer SDM, that significantly improve these desirable properties, as well as a new form of reduced description representation named MCR.Extended SDM, which uses word vectors of larger size than address vectors, enhances its hetero-associativity, improving the storage of sequences of vectors, as well as of other data structures. A novel sequence learning mechanism is introduced, and several experiments demonstrate the capacity and sequence learning capability of this memory.Integer SDM uses modular integer vectors rather than binary vectors, improving the representation capabilities of the memory and its noise robustness. Several experiments show its capacity and noise robustness. Theoretical analyses of its capacity and fidelity are also presented.A reduced description represents a whole hierarchy using a single high-dimensional vector, which can recover individual items and directly be used for complex calculations and procedures, such as making analogies. Furthermore, the hierarchy can be reconstructed from the single vector. Modular Composite Representation (MCR), a new reduced description model for the representation used in challenging AI applications, provides an attractive tradeoff between expressiveness and simplicity of operations. A theoretical analysis of its noise robustness, several experiments, and comparisons with similar models are presented.My implementations of these memories include an object oriented version using a RAM cache, a version for distributed and multi-threading execution, and a GPU version for fast vector processing

    Human-Centric Deep Generative Models: The Blessing and The Curse

    Get PDF
    Over the past years, deep neural networks have achieved significant progress in a wide range of real-world applications. In particular, my research puts a focused lens in deep generative models, a neural network solution that proves effective in visual (re)creation. But is generative modeling a niche topic that should be researched on its own? My answer is critically no. In the thesis, I present the two sides of deep generative models, their blessing and their curse to human beings. Regarding what can deep generative models do for us, I demonstrate the improvement in performance and steerability of visual (re)creation. Regarding what can we do for deep generative models, my answer is to mitigate the security concerns of DeepFakes and improve minority inclusion of deep generative models. For the performance of deep generative models, I probe on applying attention modules and dual contrastive loss to generative adversarial networks (GANs), which pushes photorealistic image generation to a new state of the art. For the steerability, I introduce Texture Mixer, a simple yet effective approach to achieve steerable texture synthesis and blending. For the security, my research spans over a series of GAN fingerprinting solutions that enable the detection and attribution of GAN-generated image misuse. For the inclusion, I investigate the biased misbehavior of generative models and present my solution in enhancing the minority inclusion of GAN models over underrepresented image attributes. All in all, I propose to project actionable insights to the applications of deep generative models, and finally contribute to human-generator interaction
    • …
    corecore