3,750 research outputs found

    Detecting fish aggregations from reef habitats mapped with high resolution side scan sonar imagery

    Get PDF
    As part of a multibeam and side scan sonar (SSS) benthic survey of the Marine Conservation District (MCD) south of St. Thomas, USVI and the seasonal closed areas in St. Croix—Lang Bank (LB) for red hind (Epinephelus guttatus) and the Mutton Snapper (MS) (Lutjanus analis) area—we extracted signals from water column targets that represent individual and aggregated fish over various benthic habitats encountered in the SSS imagery. The survey covered a total of 18 km2 throughout the federal jurisdiction fishery management areas. The complementary set of 28 habitat classification digital maps covered a total of 5,462.3 ha; MCDW (West) accounted for 45% of that area, and MCDE (East) 26%, LB 17%, and MS the remaining 13%. With the exception of MS, corals and gorgonians on consolidated habitats were significantly more abundant than submerged aquatic vegetation (SAV) on unconsolidated sediments or unconsolidated sediments. Continuous coral habitat was the most abundant consolidated habitat for both MCDW and MCDE (41% and 43% respectively). Consolidated habitats in LB and MS predominantly consisted of gorgonian plain habitat with 95% and 83% respectively. Coral limestone habitat was more abundant than coral patch habitat; it was found near the shelf break in MS, MCDW, and MCDE. Coral limestone and coral patch habitats only covered LB minimally. The high spatial resolution (0.15 m) of the acquired imagery allowed the detection of differing fish aggregation (FA) types. The largest FA densities were located at MCDW and MCDE over coral communities that occupy up to 70% of the bottom cover. Counts of unidentified swimming objects (USOs), likely representing individual fish, were similar among locations and occurred primarily over sand and shelf edge areas. Fish aggregation school sizes were significantly smaller at MS than the other three locations (MCDW, MCDE, and LB). This study shows the advantages of utilizing SSS in determining fish distributions and density

    Assessing the potential of autonomous submarine gliders for ecosystem monitoring across multiple trophic levels (plankton to cetaceans) and pollutants in shallow shelf seas

    Get PDF
    A combination of scientific, economic, technological and policy drivers is behind a recent upsurge in the use of marine autonomous systems (and accompanying miniaturized sensors) for environmental mapping and monitoring. Increased spatial–temporal resolution and coverage of data, at reduced cost, is particularly vital for effective spatial management of highly dynamic and heterogeneous shelf environments. This proof-of-concept study involves integration of a novel combination of sensors onto buoyancy-driven submarine gliders, in order to assess their suitability for ecosystem monitoring in shelf waters at a variety of trophic levels. Two shallow-water Slocum gliders were equipped with CTD and fluorometer to measure physical properties and chlorophyll, respectively. One glider was also equipped with a single-frequency echosounder to collect information on zooplankton and fish distribution. The other glider carried a Passive Acoustic Monitoring system to detect and record cetacean vocalizations, and a passive sampler to detect chemical contaminants in the water column. The two gliders were deployed together off southwest UK in autumn 2013, and targeted a known tidal-mixing front west of the Isles of Scilly. The gliders’ mission took about 40 days, with each glider travelling distances of >1000 km and undertaking >2500 dives to depths of up to 100 m. Controlling glider flight and alignment of the two glider trajectories proved to be particularly challenging due to strong tidal flows. However, the gliders continued to collect data in poor weather when an accompanying research vessel was unable to operate. In addition, all glider sensors generated useful data, with particularly interesting initial results relating to subsurface chlorophyll maxima and numerous fish/cetacean detections within the water column. The broader implications of this study for marine ecosystem monitoring with submarine gliders are discussed

    Emerging technologies for reef fisheries research and management [held during the 56th annual Gulf and Caribbean Fisheries Institute meeting in Tortola, British Virgin Islands, November 2003]

    Get PDF
    This publication of the NOAA Professional Paper NMFS Series is the product of a special symposium on “Emerging Technologies for Reef Fisheries Research and Management” held during the 56th annual Gulf and Caribbean Fisheries Institute meeting in Tortola, British Virgin Islands, November 2003. The purpose of this collection is to highlight the diversity of questions and issues in reef fisheries management that are benefiting from applications of technology. Topics cover a wide variety of questions and issues from the study of individual behavior, distribution and abundance of groups and populations, and associations between habitats and fish and shellfish species.(PDF files contains 124 pages.

    Advances in Sonar Technology

    Get PDF
    The demand to explore the largest and also one of the richest parts of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, have lead to remarkable advances in sonar technology in the last years.The work on hand is a sum of knowledge of several authors who contributed in various aspects of sonar technology. This book intends to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and their applications. It is intended for scientist and engineers from a variety of backgrounds and even those that never had contact with sonar technology before will find an easy introduction with the topics and principles exposed here

    Probablistic approaches for intelligent AUV localisation

    Get PDF
    This thesis studies the problem of intelligent localisation for an autonomous underwater vehicle (AUV). After an introduction about robot localisation and specific issues in the underwater domain, the thesis will focus on passive techniques for AUV localisation, highlighting experimental results and comparison among different techniques. Then, it will develop active techniques, which require intelligent decisions about the steps to undertake in order for the AUV to localise itself. The undertaken methodology consisted in three stages: theoretical analysis of the problem, tests with a simulation environment, integration in the robot architecture and field trials. The conclusions highlight applications and scenarios where the developed techniques have been successfully used or can be potentially used to enhance the results given by current techniques. The main contribution of this thesis is in the proposal of an active localisation module, which is able to determine the best set of action to be executed, in order to maximise the localisation results, in terms of time and efficiency

    Underwater Navigation using Pseudolite

    Get PDF
    Using pseudolite or pseudo satellite, a proven technology for ground and space applications for the augmentation of GPS, is proposed for underwater navigation. Global positioning systems (GPS) like positioning for underwater system, needs minimum of four pseudolite-ranging signals for pseudo-range and accumulated delta range measurements. Using four such measurements and using the models of underwater attenuation and delays, the navigation solution can be found. However, for application where the one-way ranging does not give good accuracy, alternative algorithms based upon the bi-directional and self-difference ranging is proposed using selfcalibrated pseudolite array algorithm. The hardware configuration is proposed for pseudolite transceiver for making the self-calibrated array. The pseudolite array, fixed or moored under the sea, can give position fixing similar to GPS for underwater applications.Defence Science Journal, 2011, 61(4), pp.331-336, DOI:http://dx.doi.org/10.14429/dsj.61.108

    Simultaneous Trajectory Estimation and Mapping for Autonomous Underwater Proximity Operations

    Full text link
    Due to the challenges regarding the limits of their endurance and autonomous capabilities, underwater docking for autonomous underwater vehicles (AUVs) has become a topic of interest for many academic and commercial applications. Herein, we take on the problem of state estimation during an autonomous underwater docking mission. Docking operations typically involve only two actors, a chaser and a target. We leverage the similarities to proximity operations (prox-ops) from spacecraft robotic missions to frame the diverse docking scenarios with a set of phases the chaser undergoes on the way to its target. We use factor graphs to generalize the underlying estimation problem for arbitrary underwater prox-ops. To showcase our framework, we use this factor graph approach to model an underwater homing scenario with an active target as a Simultaneous Localization and Mapping problem. Using basic AUV navigation sensors, relative Ultra-short Baseline measurements, and the assumption of constant dynamics for the target, we derive factors that constrain the chaser's state and the position and trajectory of the target. We detail our front- and back-end software implementation using open-source software and libraries, and verify its performance with both simulated and field experiments. Obtained results show an overall increase in performance against the unprocessed measurements, regardless of the presence of an adversarial target whose dynamics void the modeled assumptions. However, challenges with unmodeled noise parameters and stringent target motion assumptions shed light on limitations that must be addressed to enhance the accuracy and consistency of the proposed approach.Comment: 19 pages, 14 figures, submitted to the IEEE Journal of Oceanic Engineerin

    Autonomous Navigation for Autonomous Underwater Vehicles Based on Information Filters and Active Sensing

    Get PDF
    This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM

    Multipurpose acoustic networks in the integrated arctic ocean observing system

    Get PDF
    The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This activity will be driven by increased demand for energy and the marine resources of an Arctic Ocean accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism, and search and rescue will increase the pressure on the vulnerable Arctic environment. Technologies that allow synoptic in situ observations year-round are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual, and decadal scales. These data can inform and enable both sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. In this paper, we discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic, and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings, and vehicles. We support the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary in situ Arctic Ocean observatory

    Low cost underwater acoustic localization

    Full text link
    Over the course of the last decade, the cost of marine robotic platforms has significantly decreased. In part this has lowered the barriers to entry of exploring and monitoring larger areas of the earth's oceans. However, these advances have been mostly focused on autonomous surface vehicles (ASVs) or shallow water autonomous underwater vehicles (AUVs). One of the main drivers for high cost in the deep water domain is the challenge of localizing such vehicles using acoustics. A low cost one-way travel time underwater ranging system is proposed to assist in localizing deep water submersibles. The system consists of location aware anchor buoys at the surface and underwater nodes. This paper presents a comparison of methods together with details on the physical implementation to allow its integration into a deep sea micro AUV currently in development. Additional simulation results show error reductions by a factor of three.Comment: 73rd Meeting of the Acoustical Society of Americ
    corecore