98 research outputs found

    Formation Navigation and Relative Localisation of Multi-Robot Systems

    Get PDF
    When proceeding from single to multiple robots, cooperative action is one of the most relevant topics. The domain of robotic security systems contains typical applications for a multi-robot system (MRS). Possible scenarios are safety and security issues on airports, harbours, large industry plants or museums. Additionally, the field of environmental supervision is an up-coming issue. Inherent to these applications is the need for an organised and coordinated navigation of the robots, and a vital prerequisite for any coordinated movements is a good localisation. This dissertation will present novel approaches to the problems of formation navigation and relative localisation with multiple ground-based mobile robots. It also looks into the question what kind of metric is applicable for multi-robot navigation problems. Thereby, the focus of this work will be on aspects of 1. coordinated navigation and movement A new potential-field-based approach to formation navigation is presented. In contradiction to classical potential-field-based formation approaches, the proposed method also uses the orientation between neighbours in the formation. Consequently, each robot has a designated position within the formation. Therefore, the new method is called directed potential field approach. Extensive experiments prove that the method is capable of generating all kinds of formation shapes, even in the presence of dense obstacles. All tests have been conducted with simulated and real robots and successfully guided the robot formation through environments with varying obstacle configurations. In comparison, the nondirected potential field approach turns out to be unstable regarding the positions of the robots within formations. The robots strive to switch their positions, e.g. when passing through narrow passages. Under such conditions the directed approach shows a preferable behaviour, called “breathing”. The formation shrinks or inflates depending on the obstacle situation while trying to maintain its shape and keep the robots at their desired positions inside the formation. For a more particular comparison of formation algorithms it is important to have measures that allow a meaningful evaluation of the experimental data. For this purpose a new formation metric is developed. If there are many obstacles, the formation error must be scaled down to be comparable to an empty environment where the error would be small. Assuming that the environment is unknown and possibly non-static, only actual sensor information can be used for these calculations. We developed a special weighting factor, which is inverse proportional to the “density” of obstacles and which turns out to model the influence of the environment adequately. 2. relative localisation A new method for relative localisation between the members of a robot group is introduced. This relative localisation approach uses mutual sensor observations to localise the robots with respect to other objects – without having an environment model. Techniques like the Extended Kalman Filter (EKF) have proven to be powerful tools in the field of single robot applications. This work presents extensions to these algorithms with respect to the use in MRS. These aspects are investigated and combined under the topic of improving and stabilising the performance of the localisation and navigation process. Most of the common localisation approaches use maps and/or landmarks with the intention of generating a globally consistent world-coordinate system for the robot group. The aim of the here presented relative localisation approach, on the other hand, is to maintain only relative positioning between the robots. The presented method enables a group of mobile robots to start at an unknown location in an unknown environment and then to incrementally estimate their own positions and the relative locations of the other robots using only sensor information. The result is a robust, fast and precise approach, which does not need any preconditions or special assumptions about the environment. To validate the approach extensive tests with both, real and simulated, robots have been conducted. For a more specific evaluation, the Mean Localisation Error (MLE) is introduced. The conducted experiments include a comparison between the proposed Extended Kalman Filter and a standard SLAM-based approach. The developed method robustly delivered an accuracy better than 2 cm and performed at least as well as the SLAM approach. The algorithm coped with scattered groups of robots while moving on arbitrarily shaped paths. In summary, this thesis presents novel approaches to the field of coordinated navigation in multi-robot systems. The results facilitate cooperative movements of robot groups as well as relative localisation among the group members. In addition, a solid foundation for a non-environment related metric for formation navigation is introduced

    2.5D Infrared Range and Bearing System for Collective Robotics

    Get PDF
    In the growing field of collective robotics, spatial co-ordination between robots is often critical and usually achieved via local relative positioning sensors. We believe that range and bearing sensing, based on infrared technology, has the potential to fulfil the strict requirements of real-world collective robots. These requirements include: small size, light weight, large range, high refresh rate, immunity against tilting and misalignment, immunity against ambient light changes, and good range and bearing accuracy. Currently, there are no range and bearing systems that have been designed to cope with such strict requirements. This paper presents a custom range and bearing system, based on a novel cascaded filtering technology, complemented by hybrid infrared/Radio Frequency (RF) communication, which has been designed specifically to meet all these expectations. The system has been characterised and tested, proving its viability

    Passive RFID Rotation Dimension Reduction via Aggregation

    Get PDF
    Radio Frequency IDentification (RFID) has applications in object identification, position, and orientation tracking. RFID technology can be applied in hospitals for patient and equipment tracking, stores and warehouses for product tracking, robots for self-localisation, tracking hazardous materials, or locating any other desired object. Efficient and accurate algorithms that perform localisation are required to extract meaningful data beyond simple identification. A Received Signal Strength Indicator (RSSI) is the strength of a received radio frequency signal used to localise passive and active RFID tags. Many factors affect RSSI such as reflections, tag rotation in 3D space, and obstacles blocking line-of-sight. LANDMARC is a statistical method for estimating tag location based on a target tag’s similarity to surrounding reference tags. LANDMARC does not take into account the rotation of the target tag. By either aggregating multiple reference tag positions at various rotations, or by determining a rotation value for a newly read tag, we can perform an expected value calculation based on a comparison to the k-most similar training samples via an algorithm called K-Nearest Neighbours (KNN) more accurately. By choosing the average as the aggregation function, we improve the relative accuracy of single-rotation LANDMARC localisation by 10%, and any-rotation localisation by 20%

    3-D relative positioning sensor for indoor flying robots

    Get PDF
    Swarms of indoor flying robots are promising for many applications, including searching tasks in collapsing buildings, or mobile surveillance and monitoring tasks in complex man-made structures. For tasks that employ several flying robots, spatial-coordination between robots is essential for achieving collective operation. However, there is a lack of on-board sensors capable of sensing the highly-dynamic 3-D trajectories required for spatial-coordination of small indoor flying robots. Existing sensing methods typically utilise complex SLAM based approaches, or absolute positioning obtained from off-board tracking sensors, which is not practical for real-world operation. This paper presents an adaptable, embedded infrared based 3-D relative positioning sensor that also operates as a proximity sensor, which is designed to enable inter-robot spatial-coordination and goal-directed flight. This practical approach is robust to varying indoor environmental illumination conditions and is computationally simpl

    A framework for flexible integration in robotics and its applications for calibration and error compensation

    Get PDF
    Robotics has been considered as a viable automation solution for the aerospace industry to address manufacturing cost. Many of the existing robot systems augmented with guidance from a large volume metrology system have proved to meet the high dimensional accuracy requirements in aero-structure assembly. However, they have been mainly deployed as costly and dedicated systems, which might not be ideal for aerospace manufacturing having low production rate and long cycle time. The work described in this thesis is to provide technical solutions to improve the flexibility and cost-efficiency of such metrology-integrated robot systems. To address the flexibility, a software framework that supports reconfigurable system integration is developed. The framework provides a design methodology to compose distributed software components which can be integrated dynamically at runtime. This provides the potential for the automation devices (robots, metrology, actuators etc.) controlled by these software components to be assembled on demand for various assembly applications. To reduce the cost of deployment, this thesis proposes a two-stage error compensation scheme for industrial robots that requires only intermittent metrology input, thus allowing for one expensive metrology system to be used by a number of robots. Robot calibration is employed in the first stage to reduce the majority of robot inaccuracy then the metrology will correct the residual errors. In this work, a new calibration model for serial robots having a parallelogram linkage is developed that takes into account both geometric errors and joint deflections induced by link masses and weight of the end-effectors. Experiments are conducted to evaluate the two pieces of work presented above. The proposed framework is adopted to create a distributed control system that implements calibration and error compensation for a large industrial robot having a parallelogram linkage. The control system is formed by hot-plugging the control applications of the robot and metrology used together. Experimental results show that the developed error model was able to improve the 3 positional accuracy of the loaded robot from several millimetres to less than one millimetre and reduce half of the time previously required to correct the errors by using only the metrology. The experiments also demonstrate the capability of sharing one metrology system to more than one robot

    Data Association for Semantic World Modeling from Partial Views

    Get PDF
    Autonomous mobile-manipulation robots need to sense and interact with objects to accomplish high-level tasks such as preparing meals and searching for objects. To achieve such tasks, robots need semantic world models, defined as object-based representations of the world involving task-level attributes. In this work, we address the problem of estimating world models from semantic perception modules that provide noisy observations of attributes. Because attribute detections are sparse, ambiguous, and are aggregated across different viewpoints, it is unclear which attribute measurements are produced by the same object, so data association issues are prevalent. We present novel clustering-based approaches to this problem, which are more efficient and require less severe approximations compared to existing tracking-based approaches. These approaches are applied to data containing object type-and-pose detections from multiple viewpoints, and demonstrate comparable quality using a fraction of the computation time.National Science Foundation (U.S.) (NSF Grant No. 1117325)United States. Office of Naval Research (ONR MURI grant N00014-09-1-1051)United States. Air Force Office of Scientific Research (AFOSR grant FA2386-10-1-4135)Singapore. Ministry of Education (Grant to the the Singapore-MIT International Design Center

    Aerial collective systems

    Get PDF
    Deployment of multiple flying robots has attracted the interest of several research groups in the recent times both because such a feat represents many interesting scientific challenges and because aerial collective systems have a huge potential in terms of applications. By working together, multiple robots can perform a given task quicker or more efficiently than a single system. Furthermore, multiple robots can share computing, sensing and communication payloads thus leading to lighter robots that could be safer than a larger system, easier to transport and even disposable in some cases. Deploying a fleet of unmanned aerial vehicles instead of a single aircraft allows rapid coverage of a relatively larger area or volume. Collaborating airborne agents can help each other by relaying communication or by providing navigation means to their neighbours. Flying in formation provides an effective way of decongesting the airspace. Aerial swarms also have an enormous artistic potential because they allow creating physical 3D structures that can dynamically change their shape over time. However, the challenges to actually build and control aerial swarms are numerous. First of all, a flying platform is often more complicated to engineer than a terrestrial robot because of the inherent weight constraints and the absence of mechanical link with any inertial frame that could provide mechanical stability and state reference. In the first section of this chapter, we therefore review this challenges and provide pointers to state-of-the-art methods to solve them. Then as soon as flying robots need to interact with each other, all sorts of problems arise such as wireless communication from and to rapidly moving objects and relative positioning. The aim of section 3 is therefore to review possible approaches to technically enable coordination among flying systems. Finally, section 4 tackles the challenge of designing individual controllers that enable a coherent behavior at the level of the swarm. This challenge is made even more difficult with flying robots because of their 3D nature and their motion constraints that are often related to the specific architectures of the underlying physical platforms. In this third section is complementary to the rest of this book as it focusses only on methods that have been designed for aerial collective systems

    3-D Relative Positioning Sensor for Indoor Flying Robots

    Get PDF
    Swarms of indoor flying robots are promising for many applications, including searching tasks in collapsing buildings, or mobile surveillance and monitoring tasks in complex man-made structures. For tasks that employ several flying robots, spatial-coordination between robots is essential for achieving collective operation. However, there is a lack of on-board sensors capable of sensing the highly-dynamic 3-D trajectories required for spatial-coordination of small indoor flying robots. Existing sensing methods typically utilise complex SLAM based approaches, or absolute positioning obtained from on-board tracking sensors, which is not practical for real-world operation. This paper presents an adaptable, embedded infrared based 3-D relative positioning sensor that also operates as a proximity sensor, which is designed to enable inter-robot spatial coordination and goal-directed flight. This practical approach is robust to varying indoor environmental illumination conditions and is computationally simple

    The 6th Conference of PhD Students in Computer Science

    Get PDF

    Techniques For Sensor-Integrated Robotic Systems: Raman Spectra Analysis, Image Guidance, And Kinematic Calibration

    Get PDF
    Robotics and sensor technology have made impressive advancements over the years. There are now robotic systems that help perform surgeries or explore the surface of Mars, and there are sensors that detect trace amounts of explosives or identify diseased human tissue. The most powerful systems integrate robots and sensors, which are natural complements to each other. Sensors can provide information that might otherwise be unavailable due to indirect robotic manipulation (e.g., images of the target environment), and robots can provide suitably precise positioning of an analytical sensor. To have an effective sensor-integrated robotic system, multiple capabilities are needed in the areas of sensors, robotics, and techniques for robot/sensor integration. However, for many types of applications, there are shortcomings in the current technologies employed to provide these capabilities. For the analysis of complex sensor signals, there is a need for improved algorithms and open platforms that enable techniques to be shared. For the path planning and tracking of integrated sensors and the visualization of collected information, image guidance systems that support advanced analytical sensors would be very beneficial. For robotic placement of a sensor, easily usable calibration procedures and methods to overcome limited feedback could help improve the accuracy. To help address these issues, some novel systems and techniques were developed in this research. First, a software system was created to process, analyze, and classify data from a specific kind of sensor (a Raman spectrometer). The system is open and extensible, and it contains novel techniques for processing and analyzing the sensor data. Second, an image guidance system was made for use with a sensor-integrated robotic system (a Raman probe attached to a surgical system). The system supports tool tracking, sensor activation, real-time sensor data analysis, and presentation of the results in a 3D computer visualization of the environment. Third, a kinematic calibration technique was developed for serial manipulators. It requires no external measurement devices for calibration, provides solutions for some limitations of existing techniques, and can significantly enhance the positional accuracy of a robot to improve sensor placement. The implemented techniques and systems were successfully evaluated using various data sets and conditions. Together, the contributions of this work provide important building blocks for an accurate robot with an integrated analytical sensor. This type of a system would be a powerful tool for many future applications, such as a surgical robot that automatically scans for diseased tissue and assists the surgeon in the necessary treatment. Ultimately, this work is intended to foster the development of advanced sensor-integrated robotic systems
    • …
    corecore