142 research outputs found

    EXTRAPOLATED ALTERNATING ALGORITHMS FOR APPROXIMATE CANONICAL POLYADIC DECOMPOSITION

    Get PDF
    Tensor decompositions have become a central tool in machine learning to extract interpretable patterns from multiway arrays of data. However, computing the approximate Canonical Polyadic Decomposition (aCPD), one of the most important tensor decomposition model, remains a challenge. In this work, we propose several algorithms based on extrapolation that improve over existing alternating methods for aCPD. We show on several simulated and real data sets that carefully designed extrapolation can significantly improve the convergence speed hence reduce the computational time, especially in difficult scenarios

    Advances in Nonnegative Matrix Decomposition with Application to Cluster Analysis

    Get PDF
    Nonnegative Matrix Factorization (NMF) has found a wide variety of applications in machine learning and data mining. NMF seeks to approximate a nonnegative data matrix by a product of several low-rank factorizing matrices, some of which are constrained to be nonnegative. Such additive nature often results in parts-based representation of the data, which is a desired property especially for cluster analysis.  This thesis presents advances in NMF with application in cluster analysis. It reviews a class of higher-order NMF methods called Quadratic Nonnegative Matrix Factorization (QNMF). QNMF differs from most existing NMF methods in that some of its factorizing matrices occur twice in the approximation. The thesis also reviews a structural matrix decomposition method based on Data-Cluster-Data (DCD) random walk. DCD goes beyond matrix factorization and has a solid probabilistic interpretation by forming the approximation with cluster assigning probabilities only. Besides, the Kullback-Leibler divergence adopted by DCD is advantageous in handling sparse similarities for cluster analysis.  Multiplicative update algorithms have been commonly used for optimizing NMF objectives, since they naturally maintain the nonnegativity constraint of the factorizing matrix and require no user-specified parameters. In this work, an adaptive multiplicative update algorithm is proposed to increase the convergence speed of QNMF objectives.  Initialization conditions play a key role in cluster analysis. In this thesis, a comprehensive initialization strategy is proposed to improve the clustering performance by combining a set of base clustering methods. The proposed method can better accommodate clustering methods that need a careful initialization such as the DCD.  The proposed methods have been tested on various real-world datasets, such as text documents, face images, protein, etc. In particular, the proposed approach has been applied to the cluster analysis of emotional data

    Bregman proximal minimization algorithms, analysis and applications

    Get PDF
    In this thesis, we tackle the optimization of several non-smooth and non-convex objectives that arise in practice. The classical results in context of Proximal Gradient algorithms rely on the so-called Lipschitz continuous gradient property. Such conditions do not hold for many objectives in practice, including the objectives arising in matrix factorization, deep neural networks, phase retrieval, image denoising and many others. Recent development, namely, the L-smad property allows us to deal with such objectives via the so-called Bregman distances, which generalize the Euclidean distance. Based on the L-smad property, Bregman Proximal Gradient (BPG) algorithm is already well-known. In our work, we propose an inertial variant of BPG, namely, CoCaIn BPG which incorporates adaptive inertia based on the function’s local behavior. Moreover, we prove the global convergence of the sequence generated by CoCaIn BPG to a critical point of the function. CoCaIn BPG outperforms BPG with a significant margin, which is attributed to the proposed non-standard double backtracking technique. A major challenge in working with BPG based methods is designing the Bregman distance that is suitable for the objective. In this regard, we propose Bregman distances that are suitable to three applications, matrix factorization, deep matrix factorization and deep neural networks. We start with the matrix factorization setting and propose the relevant Bregman distances, then we tackle the deep matrix factorization and deep neural network settings. In all these settings, we also propose the closed form update steps for BPG based methods, which is crucial for practical application. We also propose the closed form inertia that is suitable for efficient application of CoCaIn BPG. However, until here the setting is restricted to additive composite problems and generic composite problems such as the objectives that arise in robust phase retrieval are out of the scope. In order to tackle generic composite problems, the L-smad property needs to be generalized even further. In this regard, we propose MAP property and based on which we propose Model BPG algorithm. The classical techniques of the convergence analysis based on the function value proved to be restrictive. Thus, we propose a novel Lyapunov function that is suitable for the global convergence analysis. We later unify Model BPG and CoCaIn BPG, to propose Model CoCaIn BPG for which we provide the global convergence results. We supplement all our theoretical results with relevant empirical observations to show the competitive performance of our methods compared to existing state of the art optimization methods
    • …
    corecore