2,613 research outputs found

    EVALUATION OF SWINE ODOR MANAGEMENT STRATEGIES IN A FUZZY MULTI-CRITERIA DECISION ENVIRONMENT

    Get PDF
    The paper evaluates swine odor management strategies using the fuzzy extension of the Analytical Hierarchy Process (AHP), which is a multiple criteria decision making approach based on fuzzy scales. The evaluation is conducted using data from our cost effectiveness study of odor management strategies and our on farm studies relating odor to various management practices. These strategies include manual oil sprinkling, automatic oil sprinkling, wet scrubber, diffusion-coagulation-separation (DCS) deduster, pelleting feed, and draining shallow pit weekly. The criteria employed to evaluate the strategies are odor reduction efficiency, costs, nutrients in manure, and other benefits. Two producer profiles are considered: (a) producers who are pressured to achieve maximum reduction in odor emissions; and (b) producers who are constrained with limited financial resources. Both of these profiles are reflective of current situations for some producers. The results show that, as the scale fuzziness decreases, the preference of the first producer profile over the strategies from high to low is DCS deduster, pelleting feed, automatic oil sprinkling, manual oil sprinkling, draining pit weekly, and wet scrubber while the preference of the second producer profile is draining pit weekly, DCS dedusters, automatic oil sprinkling, wet scrubbers, pelleting feed, and manual oil sprinkling.Livestock Production/Industries,

    A fuzzy decision tool to evaluate the sustainable performance of suppliers in an agrifood value chain

    Get PDF
    Sustainable supply chain management has received much attention from both academia and industry due to various issues such as economic stability, environment conservation, and social ethics. To improve the sustainable performance of a value chain, its members need to carefully select their suppliers in relation to their own strategy. Thus, an effective tool for sustainable supplier selection and evaluation is essential, which considers the triple bottom line (TBL) of economic, environmental and social aspects by means of criteria adapted to the situation analysed. This paper develops a fuzzy decision tool to evaluate the sustainable performance of suppliers according to TBL. Sustainability criteria are identified to take into account the real hotspots in a food value chain. The proposed model integrates triangular fuzzy numbers (TFN), AHP (Analytic Hierarchy Process) and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) in a novel way to consider quantitative and qualitative criteria as well as objective and subjective data. This is missing in most existing research when building their fuzzy models for supplier selection, but critical in dealing with the heterogeneous data available for TBL assessment. The application in a sustainable agrifood value chain illustrates the effectiveness of the proposed tool

    Supplier evaluation in manufacturing environment using compromise ranking method with grey interval numbers

    Get PDF
    Evaluation of proper supplier for manufacturing organizations is one of the most challenging problems in real time manufacturing environment due to a wide variety of customer demands. It has become more and more complicated to meet the challenges of international competitiveness and as the decision makers need to assess a wide range of alternative suppliers based on a set of conflicting criteria. Thus, the main objective of supplier selection is to select highly potential supplier through which all the set goals regarding the purchasing and manufacturing activity can be achieved. Because of these reasons, supplier selection has got considerable attention by the academicians and researchers. This paper presents a combined multi-criteria decision making methodology for supplier evaluation for given industrial applications. The proposed methodology is based on a compromise ranking method combined with Grey Interval Numbers considering different cardinal and ordinal criteria and their relative importance. A ‘supplier selection index’ is also proposed to help evaluation and ranking the alternative suppliers. Two examples are illustrated to demonstrate the potentiality and applicability of the proposed method

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    Assessment of Irrigation Water Use Efficiency in Citrus Orchards Using AHP

    Full text link
    [EN] Irrigation water use efficiency, the small size of the orchards, and part-time farmers are major issues for Spanish citriculture. How should irrigation water use efficiency be assessed? Does irrigation water use efficiency improve when increasing the size of the orchards? Are full-time farmers more efficient in irrigation water use than part-time ones? To address these three questions, we propose to apply a new multicriteria approach based on the analytic hierarchy process (AHP) technique and the participation of a group of experts. A new synthetic irrigation efficiency index (IEI) was proposed and tested using data from an irrigation community (IC) and a cooperative of farmers in the East of Spain. The results showed that the size of the orchards had no relation with the IEI scoring but full-time farmers tended to have better IEI scores and, thus, were more efficient. These results were obtained from a sample of 24 orchards of oranges, navelina variety, growing in a very similar environment, and agronomical characteristics. The proposed methodology can be a useful benchmarking tool for improving the irrigation water management in other ICs taking into account the issues related to farm data sharing recorded during the case study.The APC was funded by the Project 2019ES06RDEI7346 Improving the use of water and energy in modernized irrigation of fruit trees (GO InnoWater), funded by the Spanish Rural Development Program (2014-2020): EAFRD and MAPA.Poveda Bautista, R.; Roig-Merino, B.; Puerto, H.; Buitrago Vera, JM. (2021). Assessment of Irrigation Water Use Efficiency in Citrus Orchards Using AHP. International Journal of Environmental research and Public Health (Online). 18(11):1-14. https://doi.org/10.3390/ijerph18115667S114181

    A Dynamic Credit Index System for TSMEs in China Using the Delphi and Analytic Hierarchy Process (AHP) Methods

    Get PDF
    A high-quality credit index system is essential for technological small and medium-sized enterprises (TSMEs) to obtain financing from various institutions, such as banks, venture capital. Some attempts have made to construct the credit index system for TSMEs. However, the current credit index systems for TSMEs have placed too much emphasis on their financial ability with few prominent technological and talent indicators. Therefore, this study has proposed a dynamic credit index system for TSMEs in China using the Delphi and the Analytic Hierarchy Process (AHP) methods. This credit index system covers a wide range of indicators to measure the enterprises’ controller ability, operation and management ability, financial ability, and innovation capacity. This study made some contributions in the following aspects: (1) This study proposed a credit index system for TSMEs that highlights the main characteristics of technological innovation and talents of enterprises in China. (2) The credit index system is also highly adaptable as it can dynamically adjust the index weight according to the life cycles of TSMEs. (3) A case study of evaluating the credit of three TSMEs in China was selected to verify the feasibility and the effectiveness of this system. The results show that the credit index system constructed in this study provides a comprehensive and systematic model for evaluating the credit of TSMEs in China.The research was funded by Sichuan University and Chengdu Administration China (Sichuan) Pilot Free Trade Zone. And the APC was funded by Sichuan University

    A Novel Approach to Incubator Evaluations: The PROMETHEE Outranking Procedures

    Get PDF
    Considerable public resources are devoted to the establishment and operation of business incubators (BIs), which are seen as catalysts for the promotion of entrepreneurship, innovation activities and regional development. Despite the vast amount of research that has focused on the outcomes or effectiveness of incubator initiatives and how to measure incubator performance, there is still little understanding of how to determine incubators that are more effective than others. Based on data from 410 graduate firms, this paper applies the multi-criteria outranking technique PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) and compares the long-term effectiveness of five technology-oriented BIs in Germany. This is the first time that outranking procedures are used in incubator evaluations. In particular, we investigate whether PROMETHEE is a well-suited methodological approach for the evaluation and comparisons in the specific context of business incubation.business incubators, evaluation, performance measures, PROMETHEE, Outranking

    Methods for Utilizing Connected Vehicle Data in Support of Traffic Bottleneck Management

    Get PDF
    The decision to select the best Intelligent Transportation System (ITS) technologies from available options has always been a challenging task. The availability of connected vehicle/automated vehicle (CV/AV) technologies in the near future is expected to add to the complexity of the ITS investment decision-making process. The goal of this research is to develop a multi-criteria decision-making analysis (MCDA) framework to support traffic agencies’ decision-making process with consideration of CV/AV technologies. The decision to select between technology alternatives is based on identified performance measures and criteria, and constraints associated with each technology. Methods inspired by the literature were developed for incident/bottleneck detection and back-of-queue (BOQ) estimation and warning based on connected vehicle (CV) technologies. The mobility benefits of incident/bottleneck detection with different technologies were assessed using microscopic simulation. The performance of technology alternatives was assessed using simulated CV and traffic detector data in a microscopic simulation environment to be used in the proposed MCDA method for the purpose of alternative selection. In addition to assessing performance measures, there are a number of constraints and risks that need to be assessed in the alternative selection process. Traditional alternative analyses based on deterministic return on investment analysis are unable to capture the risks and uncertainties associated with the investment problem. This research utilizes a combination of a stochastic return on investment and a multi-criteria decision analysis method referred to as the Analytical Hierarchy Process (AHP) to select between ITS deployment alternatives considering emerging technologies. The approach is applied to an ITS investment case study to support freeway bottleneck management. The results of this dissertation indicate that utilizing CV data for freeway segments is significantly more cost-effective than using point detectors in detecting incidents and providing travel time estimates one year after CV technology becomes mandatory for all new vehicles and for corridors with moderate to heavy traffic. However, for corridors with light, there is a probability of CV deployment not being effective in the first few years due to low measurement reliability of travel times and high latency of incident detection, associated with smaller sample sizes of the collected data

    Multi-Dimensional Assessment of Transit System Efficiency and Incentive-based Subsidy Allocation

    Get PDF
    Over the past several decades, contending with traffic congestion and air pollution has emerged as one of the imperative issues across the world. Development of a transit-oriented urban transport system has been realized by an increasing number of countries and administrations as one of the most effective strategies for mitigating congestion and pollution problems. Despite the rapid development of public transportation system, doubts regarding the efficiency of the system and financing sustainability have arisen. Significant amount of public resources have been invested into public transport; however complaints about low service quality and unreliable transit system performance have increasingly arisen from all walks of life. Evaluating transit operational efficiency from various levels and designing incentive-based mechanisms to allocate limited subsidies/resources have become one of the most imperative challenges faced by responsible authorities to sustain the public transport system development and improve its performance and levels of service. After a comprehensive review of existing literature, this dissertation aims to develop a multi-dimensional framework composed of a series of robust multi-criteria evaluation models to assess the operational and financial performance of transit systems at various levels of application (i.e. region/city level, operator level, and route level). It further contributes to bridging the gap between transit efficiency evaluation and the subsequent subsidy allocation by developing a set of incentive-based resource allocation models taking various levels of operational and financial efficiencies into consideration. Case studies using real-world transit data will be performed to validate the performance and applicability of the proposed models
    • …
    corecore