4,020 research outputs found

    Information Loss in the Human Auditory System

    Full text link
    From the eardrum to the auditory cortex, where acoustic stimuli are decoded, there are several stages of auditory processing and transmission where information may potentially get lost. In this paper, we aim at quantifying the information loss in the human auditory system by using information theoretic tools. To do so, we consider a speech communication model, where words are uttered and sent through a noisy channel, and then received and processed by a human listener. We define a notion of information loss that is related to the human word recognition rate. To assess the word recognition rate of humans, we conduct a closed-vocabulary intelligibility test. We derive upper and lower bounds on the information loss. Simulations reveal that the bounds are tight and we observe that the information loss in the human auditory system increases as the signal to noise ratio (SNR) decreases. Our framework also allows us to study whether humans are optimal in terms of speech perception in a noisy environment. Towards that end, we derive optimal classifiers and compare the human and machine performance in terms of information loss and word recognition rate. We observe a higher information loss and lower word recognition rate for humans compared to the optimal classifiers. In fact, depending on the SNR, the machine classifier may outperform humans by as much as 8 dB. This implies that for the speech-in-stationary-noise setup considered here, the human auditory system is sub-optimal for recognizing noisy words

    Explicit Learning Curves for Transduction and Application to Clustering and Compression Algorithms

    Full text link
    Inductive learning is based on inferring a general rule from a finite data set and using it to label new data. In transduction one attempts to solve the problem of using a labeled training set to label a set of unlabeled points, which are given to the learner prior to learning. Although transduction seems at the outset to be an easier task than induction, there have not been many provably useful algorithms for transduction. Moreover, the precise relation between induction and transduction has not yet been determined. The main theoretical developments related to transduction were presented by Vapnik more than twenty years ago. One of Vapnik's basic results is a rather tight error bound for transductive classification based on an exact computation of the hypergeometric tail. While tight, this bound is given implicitly via a computational routine. Our first contribution is a somewhat looser but explicit characterization of a slightly extended PAC-Bayesian version of Vapnik's transductive bound. This characterization is obtained using concentration inequalities for the tail of sums of random variables obtained by sampling without replacement. We then derive error bounds for compression schemes such as (transductive) support vector machines and for transduction algorithms based on clustering. The main observation used for deriving these new error bounds and algorithms is that the unlabeled test points, which in the transductive setting are known in advance, can be used in order to construct useful data dependent prior distributions over the hypothesis space

    On the consistency of Multithreshold Entropy Linear Classifier

    Get PDF
    Multithreshold Entropy Linear Classifier (MELC) is a recent classifier idea which employs information theoretic concept in order to create a multithreshold maximum margin model. In this paper we analyze its consistency over multithreshold linear models and show that its objective function upper bounds the amount of misclassified points in a similar manner like hinge loss does in support vector machines. For further confirmation we also conduct some numerical experiments on five datasets.Comment: Presented at Theoretical Foundations of Machine Learning 2015 (http://tfml.gmum.net), final version published in Schedae Informaticae Journa

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    PAC Classification based on PAC Estimates of Label Class Distributions

    Full text link
    A standard approach in pattern classification is to estimate the distributions of the label classes, and then to apply the Bayes classifier to the estimates of the distributions in order to classify unlabeled examples. As one might expect, the better our estimates of the label class distributions, the better the resulting classifier will be. In this paper we make this observation precise by identifying risk bounds of a classifier in terms of the quality of the estimates of the label class distributions. We show how PAC learnability relates to estimates of the distributions that have a PAC guarantee on their L1L_1 distance from the true distribution, and we bound the increase in negative log likelihood risk in terms of PAC bounds on the KL-divergence. We give an inefficient but general-purpose smoothing method for converting an estimated distribution that is good under the L1L_1 metric into a distribution that is good under the KL-divergence.Comment: 14 page
    corecore