8,523 research outputs found

    An efficient CDMA decoder for correlated information sources

    Full text link
    We consider the detection of correlated information sources in the ubiquitous Code-Division Multiple-Access (CDMA) scheme. We propose a message-passing based scheme for detecting correlated sources directly, with no need for source coding. The detection is done simultaneously over a block of transmitted binary symbols (word). Simulation results are provided demonstrating a substantial improvement in bit-error-rate in comparison with the unmodified detector and the alternative of source compression. The robustness of the error-performance improvement is shown under practical model settings, including wrong estimation of the generating Markov transition matrix and finite-length spreading codes.Comment: 11 page

    Local stability of Kolmogorov forward equations for finite state nonlinear Markov processes

    Get PDF
    The focus of this work is on local stability of a class of nonlinear ordinary differential equations (ODE) that describe limits of empirical measures associated with finite-state weakly interacting N-particle systems. Local Lyapunov functions are identified for several classes of such ODE, including those associated with systems with slow adaptation and Gibbs systems. Using results from [5] and large deviations heuristics, a partial differential equation (PDE) associated with the nonlinear ODE is introduced and it is shown that positive definite subsolutions of this PDE serve as local Lyapunov functions for the ODE. This PDE characterization is used to construct explicit Lyapunov functions for a broad class of models called locally Gibbs systems. This class of models is significantly larger than the family of Gibbs systems and several examples of such systems are presented, including models with nearest neighbor jumps and models with simultaneous jumps that arise in applications.Comment: Updated to include Acknowledgement

    Limits of relative entropies associated with weakly interacting particle systems

    Get PDF
    The limits of scaled relative entropies between probability distributions associated with N-particle weakly interacting Markov processes are considered. The convergence of such scaled relative entropies is established in various settings. The analysis is motivated by the role relative entropy plays as a Lyapunov function for the (linear) Kolmogorov forward equation associated with an ergodic Markov process, and Lyapunov function properties of these scaling limits with respect to nonlinear finite-state Markov processes are studied in the companion paper [6]

    Reduction of Markov Chains using a Value-of-Information-Based Approach

    Full text link
    In this paper, we propose an approach to obtain reduced-order models of Markov chains. Our approach is composed of two information-theoretic processes. The first is a means of comparing pairs of stationary chains on different state spaces, which is done via the negative Kullback-Leibler divergence defined on a model joint space. Model reduction is achieved by solving a value-of-information criterion with respect to this divergence. Optimizing the criterion leads to a probabilistic partitioning of the states in the high-order Markov chain. A single free parameter that emerges through the optimization process dictates both the partition uncertainty and the number of state groups. We provide a data-driven means of choosing the `optimal' value of this free parameter, which sidesteps needing to a priori know the number of state groups in an arbitrary chain.Comment: Submitted to Entrop
    • …
    corecore