182 research outputs found

    Millibots: The Development of a Framework and Algorithms for a Distributed Heterogeneous Robot Team

    Get PDF
    The definitive article was published in IEEE Robotics and Automation Magazine, Volume 9, Issue 4, located at http://ieeexplore.ieee.org/ (DOI: 10.1109/MRA.2002.1160069) © Institute of Electrical and Electronics Engineers (IEEE)

    Development of a simulation tool for measurements and analysis of simulated and real data to identify ADLs and behavioral trends through statistics techniques and ML algorithms

    Get PDF
    openCon una popolazione di anziani in crescita, il numero di soggetti a rischio di patologia è in rapido aumento. Molti gruppi di ricerca stanno studiando soluzioni pervasive per monitorare continuamente e discretamente i soggetti fragili nelle loro case, riducendo i costi sanitari e supportando la diagnosi medica. Comportamenti anomali durante l'esecuzione di attività di vita quotidiana (ADL) o variazioni sulle tendenze comportamentali sono di grande importanza.With a growing population of elderly people, the number of subjects at risk of pathology is rapidly increasing. Many research groups are studying pervasive solutions to continuously and unobtrusively monitor fragile subjects in their homes, reducing health-care costs and supporting the medical diagnosis. Anomalous behaviors while performing activities of daily living (ADLs) or variations on behavioral trends are of great importance. To measure ADLs a significant number of parameters need to be considering affecting the measurement such as sensors and environment characteristics or sensors disposition. To face the impossibility to study in the real context the best configuration of sensors able to minimize costs and maximize accuracy, simulation tools are being developed as powerful means. This thesis presents several contributions on this topic. In the following research work, a study of a measurement chain aimed to measure ADLs and represented by PIRs sensors and ML algorithm is conducted and a simulation tool in form of Web Application has been developed to generate datasets and to simulate how the measurement chain reacts varying the configuration of the sensors. Starting from eWare project results, the simulation tool has been thought to provide support for technicians, developers and installers being able to speed up analysis and monitoring times, to allow rapid identification of changes in behavioral trends, to guarantee system performance monitoring and to study the best configuration of the sensors network for a given environment. The UNIVPM Home Care Web App offers the chance to create ad hoc datasets related to ADLs and to conduct analysis thanks to statistical algorithms applied on data. To measure ADLs, machine learning algorithms have been implemented in the tool. Five different tasks have been identified. To test the validity of the developed instrument six case studies divided into two categories have been considered. To the first category belong those studies related to: 1) discover the best configuration of the sensors keeping environmental characteristics and user behavior as constants; 2) define the most performant ML algorithms. The second category aims to proof the stability of the algorithm implemented and its collapse condition by varying user habits. Noise perturbation on data has been applied to all case studies. Results show the validity of the generated datasets. By maximizing the sensors network is it possible to minimize the ML error to 0.8%. Due to cost is a key factor in this scenario, the fourth case studied considered has shown that minimizing the configuration of the sensors it is possible to reduce drastically the cost with a more than reasonable value for the ML error around 11.8%. Results in ADLs measurement can be considered more than satisfactory.INGEGNERIA INDUSTRIALEopenPirozzi, Michel

    Applications of nanogenerators for biomedical engineering and healthcare systems

    Get PDF
    The dream of human beings for long living has stimulated the rapid development of biomedical and healthcare equipment. However, conventional biomedical and healthcare devices have shortcomings such as short service life, large equipment size, and high potential safety hazards. Indeed, the power supply for conventional implantable device remains predominantly batteries. The emerging nanogenerators, which harvest micro/nanomechanical energy and thermal energy from human beings and convert into electrical energy, provide an ideal solution for self‐powering of biomedical devices. The combination of nanogenerators and biomedicine has been accelerating the development of self‐powered biomedical equipment. This article first introduces the operating principle of nanogenerators and then reviews the progress of nanogenerators in biomedical applications, including power supply, smart sensing, and effective treatment. Besides, the microbial disinfection and biodegradation performances of nanogenerators have been updated. Next, the protection devices have been discussed such as face mask with air filtering function together with real‐time monitoring of human health from the respiration and heat emission. Besides, the nanogenerator devices have been categorized by the types of mechanical energy from human beings, such as the body movement, tissue and organ activities, energy from chemical reactions, and gravitational potential energy. Eventually, the challenges and future opportunities in the applications of nanogenerators are delivered in the conclusive remarks. The combination of nanogenerator and biomedicine have been accelerating the development of self‐powered biomedical devices, which show a bright future in biomedicine and healthcare such as smart sensing, and therapy

    An Improved Strategy for Detection and Localization of Nodules in Liver Tissues by a 16 MHz Needle Ultrasonic Probe Mounted on a Robotic Platform

    Get PDF
    This study presents an improved strategy for the detection and localization of small size nodules (down to few mm) of agar in excised pork liver tissues via pulse-echo ultrasound measurements performed with a 16 MHz needle probe. This work contributes to the development of a new generation of medical instruments to support robotic surgery decision processes that need information about cancerous tissues in a short time (minutes). The developed ultrasonic probe is part of a scanning platform designed for the automation of surgery-associated histological analyses. It was coupled with a force sensor to control the indentation of tissue samples placed on a steel plate. For the detection of nodules, we took advantage of the property of nodules of altering not only the acoustical properties of tissues producing ultrasound attenuation, but also of developing patterns at their boundary that can modify the shape and the amplitude of the received echo signals from the steel plate supporting the tissues. Besides the Correlation Index Amplitude (CIA), which is linked to the overall amplitude changes of the ultrasonic signals, we introduced the Correlation Index Shape (CIS) linked to their shape changes. Furthermore, we applied AND-OR logical operators to these correlation indices. The results were found particularly helpful in the localization of the irregular masses of agar we inserted into some excised liver tissues, and in the individuation of the regions of major interest over which perform the vertical dissections of tissues in an automated analysis finalized to histopathology. We correctly identified up to 89% of inclusions, with an improvement of about 14% with respect to the result obtained (78%) from the analysis performed with the CIA parameter only

    Data Processing for Device-Free Fine-Grained Occupancy Sensing Using Infrared Sensors

    Get PDF
    Fine-grained occupancy information plays an essential role for various emerging applications in smart homes, such as personalized thermal comfort control and human behavior analysis. Existing occupancy sensors, such as passive infrared (PIR) sensors generally provide limited coarse information such as motion. However, the detection of fine-grained occupancy information such as stationary presence, posture, identification, and activity tracking can be enabled with the advance of sensor technologies. Among these, infrared sensing is a low-cost, device-free, and privacy-preserving choice that detects the fluctuation (PIR sensors) or the thermal profiles (thermopile array sensors) from objects' infrared radiation. This work focuses on developing data processing models towards fine-grained occupancy sensing using the synchronized low-energy electronically chopped PIR (SLEEPIR) sensor or the thermopile array sensors. The main contributions of this dissertation include: (1) creating and validating the mathematical model of the SLEEPIR sensor output towards stationary occupancy detection; (2) developing the SLEEPIR detection algorithm using statistical features and long-short term memory (LSTM) deep learning; (3) building machine learning framework for posture detection and activity tracking using thermopile array sensors; and (4) creating convolutional neural network (CNN) models for facing direction detection and identification using thermopile array sensors

    Progetto di reti Sensori Wireless e tecniche di Fusione Sensoriale

    Get PDF
    Ambient Intelligence (AmI) envisions a world where smart, electronic environments are aware and responsive to their context. People moving into these settings engage many computational devices and systems simultaneously even if they are not aware of their presence. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. The dependence on a large amount of fixed and mobile sensors embedded into the environment makes of Wireless Sensor Networks one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes, simple devices that typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. In order to handle the large amount of data generated by a WSN several multi sensor data fusion techniques have been developed. The aim of multisensor data fusion is to combine data to achieve better accuracy and inferences than could be achieved by the use of a single sensor alone. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas: Multimodal Surveillance and Activity Recognition. Novel techniques to handle data from a network of low-cost, low-power Pyroelectric InfraRed (PIR) sensors are presented. Such techniques allow the detection of the number of people moving in the environment, their direction of movement and their position. We discuss how a mesh of PIR sensors can be integrated with a video surveillance system to increase its performance in people tracking. Furthermore we embed a PIR sensor within the design of a Wireless Video Sensor Node (WVSN) to extend its lifetime. Activity recognition is a fundamental block in natural interfaces. A challenging objective is to design an activity recognition system that is able to exploit a redundant but unreliable WSN. We present our activity in building a novel activity recognition architecture for such a dynamic system. The architecture has a hierarchical structure where simple nodes performs gesture classification and a high level meta classifiers fuses a changing number of classifier outputs. We demonstrate the benefit of such architecture in terms of increased recognition performance, and fault and noise robustness. Furthermore we show how we can extend network lifetime by performing a performance-power trade-off. Smart objects can enhance user experience within smart environments. We present our work in extending the capabilities of the Smart Micrel Cube (SMCube), a smart object used as tangible interface within a tangible computing framework, through the development of a gesture recognition algorithm suitable for this limited computational power device. Finally the development of activity recognition techniques can greatly benefit from the availability of shared dataset. We report our experience in building a dataset for activity recognition. Such dataset is freely available to the scientific community for research purposes and can be used as a testbench for developing, testing and comparing different activity recognition techniques
    corecore