1,965 research outputs found

    PHALANX: Expendable Projectile Sensor Networks for Planetary Exploration

    Get PDF
    Technologies enabling long-term, wide-ranging measurement in hard-to-reach areas are a critical need for planetary science inquiry. Phenomena of interest include flows or variations in volatiles, gas composition or concentration, particulate density, or even simply temperature. Improved measurement of these processes enables understanding of exotic geologies and distributions or correlating indicators of trapped water or biological activity. However, such data is often needed in unsafe areas such as caves, lava tubes, or steep ravines not easily reached by current spacecraft and planetary robots. To address this capability gap, we have developed miniaturized, expendable sensors which can be ballistically lobbed from a robotic rover or static lander - or even dropped during a flyover. These projectiles can perform sensing during flight and after anchoring to terrain features. By augmenting exploration systems with these sensors, we can extend situational awareness, perform long-duration monitoring, and reduce utilization of primary mobility resources, all of which are crucial in surface missions. We call the integrated payload that includes a cold gas launcher, smart projectiles, planning software, network discovery, and science sensing: PHALANX. In this paper, we introduce the mission architecture for PHALANX and describe an exploration concept that pairs projectile sensors with a rover mothership. Science use cases explored include reconnaissance using ballistic cameras, volatiles detection, and building timelapse maps of temperature and illumination conditions. Strategies to autonomously coordinate constellations of deployed sensors to self-discover and localize with peer ranging (i.e. a local GPS) are summarized, thus providing communications infrastructure beyond-line-of-sight (BLOS) of the rover. Capabilities were demonstrated through both simulation and physical testing with a terrestrial prototype. The approach to developing a terrestrial prototype is discussed, including design of the launching mechanism, projectile optimization, micro-electronics fabrication, and sensor selection. Results from early testing and characterization of commercial-off-the-shelf (COTS) components are reported. Nodes were subjected to successful burn-in tests over 48 hours at full logging duty cycle. Integrated field tests were conducted in the Roverscape, a half-acre planetary analog environment at NASA Ames, where we tested up to 10 sensor nodes simultaneously coordinating with an exploration rover. Ranging accuracy has been demonstrated to be within +/-10cm over 20m using commodity radios when compared to high-resolution laser scanner ground truthing. Evolution of the design, including progressive miniaturization of the electronics and iterated modifications of the enclosure housing for streamlining and optimized radio performance are described. Finally, lessons learned to date, gaps toward eventual flight mission implementation, and continuing future development plans are discussed

    Efficient AoA-based wireless indoor localization for hospital outpatients using mobile devices

    Get PDF
    The motivation of this work is to help outpatients find their corresponding departments or clinics, thus, it needs to provide indoor positioning services with a room-level accuracy. Unlike wireless outdoor localization that is dominated by the global positioning system (GPS), wireless indoor localization is still an open issue. Many different schemes are being developed to meet the increasing demand for indoor localization services. In this paper, we investigated the AoA-based wireless indoor localization for outpatients’ wayfinding in a hospital, where Wi-Fi access points (APs) are deployed, in line, on the ceiling. The target position can be determined by a mobile device, like a smartphone, through an efficient geometric calculation with two known APs coordinates and the angles of the incident radios. All possible positions in which the target may appear have been comprehensively investigated, and the corresponding solutions were proven to be the same. Experimental results show that localization error was less than 2.5 m, about 80% of the time, which can satisfy the outpatients’ requirements for wayfinding

    PROSPECTS FOR RURAL GROWTH? MEASURING GROWTH LINKAGES IN A SOUTH AFRICAN SMALLHOLDER FARMING AREA

    Get PDF
    This paper addresses the possible impact of rising smallholder incomes on local non-agricultural development in a case study area located in the Eastern Cape province of South Africa. It determines how increased rural incomes are spent on a mix of goods and services, and debates the implications of these spending patterns for growth in rural areas through the alleviation of demand constraints. These results make it possible to identify areas of intervention necessary for sustaining growth originating from stimulus to tradable agriculture from economic reforms. This paper thus contributes to an emerging literature on the possible impact of promoting smallholder agriculture in South Africa on rural livelihoods.rural, growth linkages, multipliers, smallholder, South Africa, Africa, Community/Rural/Urban Development,

    Robust Exploration Strategies for a Robot exploring a Wireless Network

    Get PDF
    Integration of robots into wireless networks is important for a number of scenarios. One of the tasks is network exploration for which the most basic case is finding the physical outline of the network. We propose a robust algorithm for exploring the outline of a network with a mobile robot. For this algorithm we study robustness against noise for several sensory inputs

    Securearray: Improving WiFi security with fine-grained physical-layer information

    Get PDF
    Despite the important role that WiFi networks play in home and enterprise networks they are relatively weak from a security standpoint. With easily available directional antennas, attackers can be physically located off-site, yet compromise WiFi security protocols such as WEP, WPA, and even to some extent WPA2 through a range of exploits specific to those protocols, or simply by running dictionary and human-factors attacks on users' poorly-chosen passwords. This presents a security risk to the entire home or enterprise network. To mitigate this ongoing problem, we propose SecureArray, a system designed to operate alongside existing wireless security protocols, adding defense in depth against active attacks. SecureArray's novel signal processing techniques leverage multi-antenna access point (AP) to profile the directions at which a client's signals arrive, using this angle-of-arrival (AoA) information to construct highly sensitive signatures that with very high probability uniquely identify each client. Upon overhearing a suspicious transmission, the client and AP initiate an AoA signature-based challenge-response protocol to confirm and mitigate the threat. We also discuss how SecureArray can mitigate direct denial-of-service attacks on the latest 802.11 wireless security protocol. We have implemented SecureArray with an eight-antenna WARP hardware radio acting as the AP. Our experimental results show that in a busy office environment, SecureArray is orders of magnitude more accurate than current techniques, mitigating 100% of WiFi spoofing attack attempts while at the same time triggering false alarms on just 0.6% of legitimate traffic. Detection rate remains high when the attacker is located only five centimeters away from the legitimate client, for AP with fewer numbers of antennas and when client is mobile

    LiFi: Line-of-sight identification with WiFi

    Get PDF

    Pushing the Limits of Indoor Localization in Today’s Wi-Fi Networks

    Get PDF
    Wireless networks are ubiquitous nowadays and play an increasingly important role in our everyday lives. Many emerging applications including augmented reality, indoor navigation and human tracking, rely heavily on Wi-Fi, thus requiring an even more sophisticated network. One key component for the success of these applications is accurate localization. While we have GPS in the outdoor environment, indoor localization at a sub-meter granularity remains challenging due to a number of factors, including the presence of strong wireless multipath reflections indoors and the burden of deploying and maintaining any additional location service infrastructure. On the other hand, Wi-Fi technology has developed significantly in the last 15 years evolving from 802.11b/a/g to the latest 802.11n and 802.11ac standards. Single user multiple-input, multiple-output (SU-MIMO) technology has been adopted in 802.11n while multi-user MIMO is introduced in 802.11ac to increase throughput. In Wi-Fi’s development, one interesting trend is the increasing number of antennas attached to a single access point (AP). Another trend is the presence of frequency-agile radios and larger bandwidths in the latest 802.11n/ac standards. These opportunities can be leveraged to increase the accuracy of indoor wireless localization significantly in the two systems proposed in this thesis: ArrayTrack employs multi-antenna APs for angle-of-arrival (AoA) information to localize clients accurately indoors. It is the first indoor Wi-Fi localization system able to achieve below half meter median accuracy. Innovative multipath identification scheme is proposed to handle the challenging multipath issue in indoor environment. ArrayTrack is robust in term of signal to noise ratio, collision and device orientation. ArrayTrack does not require any offline training and the computational load is small, making it a great candidate for real-time location services. With six 8-antenna APs, ArrayTrack is able to achieve a median error of 23 cm indoors in the presence of strong multipath reflections in a typical office environment. ToneTrack is a fine-grained indoor localization system employing time difference of arrival scheme (TDoA). ToneTrack uses a novel channel combination algorithm to increase effective bandwidth without increasing the radio’s sampling rate, for higher resolution time of arrival (ToA) information. A new spectrum identification scheme is proposed to retrieve useful information from a ToA profile even when the overall profile is mostly inaccurate. The triangle inequality property is then applied to detect and discard the APs whose direct path is 100% blocked. With a combination of only three 20 MHz channels in the 2.4 GHz band, ToneTrack is able to achieve below one meter median error, outperforming the traditional super-resolution ToA schemes significantly

    Studies in Income and Wealth

    Get PDF
    • …
    corecore