3,336 research outputs found

    Symbolic verification of timed asynchronous hardware protocols

    Get PDF
    pre-printCorrect interaction of asynchronous protocols re- quires verification. Timed asynchronous protocols add another layer of complexity to the verification challenge. A methodology and automated tool flow have been developed for verifying systems of timed asynchronous circuits through compositional model checking of formal models with symbolic methods. The approach uses relative timing constraints to model timing in asynchronous hardware protocols - a novel mapping of timing into the verification flow. Relative timing constraints are enforced at the interface external to the protocol component. SAT based and BDD based methods are explored employing both interleaving and simultaneous compositions. We present our representation of relative timing constraints, its mapping to a formal model, and results obtained using NuSMV on several moderate sized asynchronous protocol examples. The results show that the capability of previous methods is enhanced to enable the hierarchical verification of substantially larger timed systems

    Formal and Informal Methods for Multi-Core Design Space Exploration

    Full text link
    We propose a tool-supported methodology for design-space exploration for embedded systems. It provides means to define high-level models of applications and multi-processor architectures and evaluate the performance of different deployment (mapping, scheduling) strategies while taking uncertainty into account. We argue that this extension of the scope of formal verification is important for the viability of the domain.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Relative timing

    Get PDF
    Journal ArticleRelative Timing is introduced as an informal method for aggressive asynchronous design. It is demonstrated on three example circuits (C-Element, FIFO, and RAPPID Tag Unit), facilitating transformations from speed-independent circuits to burst-mode, relative timed, and pulse-mode circuits. Relative timing enables improved performance, area, power and testability in all three cases

    Relative timing

    Get PDF
    Journal ArticleAbstract-Relative timing (RT) is introduced as a method for asynchronous design. Timing requirements of a circuit are made explicit using relative timing. Timing can be directly added, removed, and optimized using this style. RT synthesis and verification are demonstrated on three example circuits, facilitating transformations from speed-independent circuits to burst-mode and pulse-mode circuits. Relative timing enables improved performance, area, power, and functional testability of up to a factor of 3x in all three cases. This method is the foundation of optimized timed circuit designs used in an industrial test chip, and may be formalized and automated

    RAPPID: an asynchronous instruction length decoder

    Get PDF
    Journal ArticleThis paper describes an investigation of potential advantages and risks of applying an aggressive asynchronous design methodology to Intel Architecture. RAPPID ("Revolving Asynchronous Pentium® Processor Instruction Decoder"), a prototype IA32 instruction length decoding and steering unit, was implemented using self-timed techniques. RAPPID chip was fabricated on a 0.25m CMOS process and tested successfully. Results show significant advantages-in particular, performance of 2.5-4.5 instructions/nS-with manageable risks using this design technology. RAPPID achieves three times the throughput and half the latency, dissipating only half the power and requiring about the same area as an existing 400MHz clocked circuit

    Lazy transition systems and asynchronous circuit synthesis with relative timing assumptions

    Get PDF
    Journal ArticleThis paper presents a design flow for timed asynchronous circuits. It introduces lazy transitions systems as a new computational model to represent the timing information required for synthesis. The notion of laziness explicitly distinguishes between the enabling and the firing of an event in a transition system. Lazy transition systems can be effectively used to model the behavior of asynchronous circuits in which relative timing assumptions can be made on the occurrence of events. These assumptions can be derived from the information known a priori about the delay of the environment and the timing characteristics of the gates that will implement the circuit. The paper presents necessary conditions to generate circuits and a synthesis algorithm that exploits the timing assumptions for optimization. It also proposes a method for back-annotation that derives a set of sufficient timing constraints that guarantee the correctness of the circuit

    Lazy transition systems: application to timing optimization of asynchronous circuits

    Get PDF
    The paper introduces Lazy Transitions Systems (LzTSs). The notion of laziness explicitly distinguishes between the enabling and the firing of an event in a transition system. LzTSs can be effectively used to model the behavior of asynchronous circuits in which relative timing assumptions can be made on the occurrence of events. These assumptions can be derived from the information known a priori about the delay of the environment and the timing characteristics of the gates that will implement the circuit. The paper presents necessary conditions to synthesize circuits with a correct behavior under the given timing assumptions. Preliminary results show that significant area and performance improvements can be obtained by exploiting the extra "don't care" space implicitly provided by the laziness of the events.Peer ReviewedPostprint (author's final draft
    • …
    corecore