20,270 research outputs found

    Relative Suffix Trees

    Get PDF
    Suffix trees are one of the most versatile data structures in stringology, with many applications in bioinformatics. Their main drawback is their size, which can be tens of times larger than the input sequence. Much effort has been put into reducing the space usage, leading ultimately to compressed suffix trees. These compressed data structures can efficiently simulate the suffix tree, while using space proportional to a compressed representation of the sequence. In this work, we take a new approach to compressed suffix trees for repetitive sequence collections, such as collections of individual genomes. We compress the suffix trees of individual sequences relative to the suffix tree of a reference sequence. These relative data structures provide competitive time/space trade-offs, being almost as small as the smallest compressed suffix trees for repetitive collections, and competitive in time with the largest and fastest compressed suffix trees.Peer reviewe

    Wavelet Trees Meet Suffix Trees

    Full text link
    We present an improved wavelet tree construction algorithm and discuss its applications to a number of rank/select problems for integer keys and strings. Given a string of length n over an alphabet of size σn\sigma\leq n, our method builds the wavelet tree in O(nlogσ/logn)O(n \log \sigma/ \sqrt{\log{n}}) time, improving upon the state-of-the-art algorithm by a factor of logn\sqrt{\log n}. As a consequence, given an array of n integers we can construct in O(nlogn)O(n \sqrt{\log n}) time a data structure consisting of O(n)O(n) machine words and capable of answering rank/select queries for the subranges of the array in O(logn/loglogn)O(\log n / \log \log n) time. This is a loglogn\log \log n-factor improvement in query time compared to Chan and P\u{a}tra\c{s}cu and a logn\sqrt{\log n}-factor improvement in construction time compared to Brodal et al. Next, we switch to stringological context and propose a novel notion of wavelet suffix trees. For a string w of length n, this data structure occupies O(n)O(n) words, takes O(nlogn)O(n \sqrt{\log n}) time to construct, and simultaneously captures the combinatorial structure of substrings of w while enabling efficient top-down traversal and binary search. In particular, with a wavelet suffix tree we are able to answer in O(logx)O(\log |x|) time the following two natural analogues of rank/select queries for suffixes of substrings: for substrings x and y of w count the number of suffixes of x that are lexicographically smaller than y, and for a substring x of w and an integer k, find the k-th lexicographically smallest suffix of x. We further show that wavelet suffix trees allow to compute a run-length-encoded Burrows-Wheeler transform of a substring x of w in O(slogx)O(s \log |x|) time, where s denotes the length of the resulting run-length encoding. This answers a question by Cormode and Muthukrishnan, who considered an analogous problem for Lempel-Ziv compression.Comment: 33 pages, 5 figures; preliminary version published at SODA 201

    Suffix Tree of Alignment: An Efficient Index for Similar Data

    Full text link
    We consider an index data structure for similar strings. The generalized suffix tree can be a solution for this. The generalized suffix tree of two strings AA and BB is a compacted trie representing all suffixes in AA and BB. It has A+B|A|+|B| leaves and can be constructed in O(A+B)O(|A|+|B|) time. However, if the two strings are similar, the generalized suffix tree is not efficient because it does not exploit the similarity which is usually represented as an alignment of AA and BB. In this paper we propose a space/time-efficient suffix tree of alignment which wisely exploits the similarity in an alignment. Our suffix tree for an alignment of AA and BB has A+ld+l1|A| + l_d + l_1 leaves where ldl_d is the sum of the lengths of all parts of BB different from AA and l1l_1 is the sum of the lengths of some common parts of AA and BB. We did not compromise the pattern search to reduce the space. Our suffix tree can be searched for a pattern PP in O(P+occ)O(|P|+occ) time where occocc is the number of occurrences of PP in AA and BB. We also present an efficient algorithm to construct the suffix tree of alignment. When the suffix tree is constructed from scratch, the algorithm requires O(A+ld+l1+l2)O(|A| + l_d + l_1 + l_2) time where l2l_2 is the sum of the lengths of other common substrings of AA and BB. When the suffix tree of AA is already given, it requires O(ld+l1+l2)O(l_d + l_1 + l_2) time.Comment: 12 page

    Compressed Spaced Suffix Arrays

    Full text link
    Spaced seeds are important tools for similarity search in bioinformatics, and using several seeds together often significantly improves their performance. With existing approaches, however, for each seed we keep a separate linear-size data structure, either a hash table or a spaced suffix array (SSA). In this paper we show how to compress SSAs relative to normal suffix arrays (SAs) and still support fast random access to them. We first prove a theoretical upper bound on the space needed to store an SSA when we already have the SA. We then present experiments indicating that our approach works even better in practice

    Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation

    Get PDF
    Given a static reference string RR and a source string SS, a relative compression of SS with respect to RR is an encoding of SS as a sequence of references to substrings of RR. Relative compression schemes are a classic model of compression and have recently proved very successful for compressing highly-repetitive massive data sets such as genomes and web-data. We initiate the study of relative compression in a dynamic setting where the compressed source string SS is subject to edit operations. The goal is to maintain the compressed representation compactly, while supporting edits and allowing efficient random access to the (uncompressed) source string. We present new data structures that achieve optimal time for updates and queries while using space linear in the size of the optimal relative compression, for nearly all combinations of parameters. We also present solutions for restricted and extended sets of updates. To achieve these results, we revisit the dynamic partial sums problem and the substring concatenation problem. We present new optimal or near optimal bounds for these problems. Plugging in our new results we also immediately obtain new bounds for the string indexing for patterns with wildcards problem and the dynamic text and static pattern matching problem

    Optimal-Time Text Indexing in BWT-runs Bounded Space

    Full text link
    Indexing highly repetitive texts --- such as genomic databases, software repositories and versioned text collections --- has become an important problem since the turn of the millennium. A relevant compressibility measure for repetitive texts is rr, the number of runs in their Burrows-Wheeler Transform (BWT). One of the earliest indexes for repetitive collections, the Run-Length FM-index, used O(r)O(r) space and was able to efficiently count the number of occurrences of a pattern of length mm in the text (in loglogarithmic time per pattern symbol, with current techniques). However, it was unable to locate the positions of those occurrences efficiently within a space bounded in terms of rr. Since then, a number of other indexes with space bounded by other measures of repetitiveness --- the number of phrases in the Lempel-Ziv parse, the size of the smallest grammar generating the text, the size of the smallest automaton recognizing the text factors --- have been proposed for efficiently locating, but not directly counting, the occurrences of a pattern. In this paper we close this long-standing problem, showing how to extend the Run-Length FM-index so that it can locate the occocc occurrences efficiently within O(r)O(r) space (in loglogarithmic time each), and reaching optimal time O(m+occ)O(m+occ) within O(rlog(n/r))O(r\log(n/r)) space, on a RAM machine of w=Ω(logn)w=\Omega(\log n) bits. Within O(rlog(n/r))O(r\log (n/r)) space, our index can also count in optimal time O(m)O(m). Raising the space to O(rwlogσ(n/r))O(r w\log_\sigma(n/r)), we support count and locate in O(mlog(σ)/w)O(m\log(\sigma)/w) and O(mlog(σ)/w+occ)O(m\log(\sigma)/w+occ) time, which is optimal in the packed setting and had not been obtained before in compressed space. We also describe a structure using O(rlog(n/r))O(r\log(n/r)) space that replaces the text and extracts any text substring of length \ell in almost-optimal time O(log(n/r)+log(σ)/w)O(\log(n/r)+\ell\log(\sigma)/w). (...continues...

    Fully-Functional Suffix Trees and Optimal Text Searching in BWT-runs Bounded Space

    Get PDF
    Indexing highly repetitive texts - such as genomic databases, software repositories and versioned text collections - has become an important problem since the turn of the millennium. A relevant compressibility measure for repetitive texts is r, the number of runs in their Burrows-Wheeler Transforms (BWTs). One of the earliest indexes for repetitive collections, the Run-Length FM-index, used O(r) space and was able to efficiently count the number of occurrences of a pattern of length m in the text (in loglogarithmic time per pattern symbol, with current techniques). However, it was unable to locate the positions of those occurrences efficiently within a space bounded in terms of r. In this paper we close this long-standing problem, showing how to extend the Run-Length FM-index so that it can locate the occ occurrences efficiently within O(r) space (in loglogarithmic time each), and reaching optimal time, O(m + occ), within O(r log log w ({\sigma} + n/r)) space, for a text of length n over an alphabet of size {\sigma} on a RAM machine with words of w = {\Omega}(log n) bits. Within that space, our index can also count in optimal time, O(m). Multiplying the space by O(w/ log {\sigma}), we support count and locate in O(dm log({\sigma})/we) and O(dm log({\sigma})/we + occ) time, which is optimal in the packed setting and had not been obtained before in compressed space. We also describe a structure using O(r log(n/r)) space that replaces the text and extracts any text substring of length ` in almost-optimal time O(log(n/r) + ` log({\sigma})/w). Within that space, we similarly provide direct access to suffix array, inverse suffix array, and longest common prefix array cells, and extend these capabilities to full suffix tree functionality, typically in O(log(n/r)) time per operation.Comment: submitted version; optimal count and locate in smaller space: O(r log log_w(n/r + sigma)
    corecore