15,189 research outputs found

    1-Bit Matrix Completion

    Full text link
    In this paper we develop a theory of matrix completion for the extreme case of noisy 1-bit observations. Instead of observing a subset of the real-valued entries of a matrix M, we obtain a small number of binary (1-bit) measurements generated according to a probability distribution determined by the real-valued entries of M. The central question we ask is whether or not it is possible to obtain an accurate estimate of M from this data. In general this would seem impossible, but we show that the maximum likelihood estimate under a suitable constraint returns an accurate estimate of M when ||M||_{\infty} <= \alpha, and rank(M) <= r. If the log-likelihood is a concave function (e.g., the logistic or probit observation models), then we can obtain this maximum likelihood estimate by optimizing a convex program. In addition, we also show that if instead of recovering M we simply wish to obtain an estimate of the distribution generating the 1-bit measurements, then we can eliminate the requirement that ||M||_{\infty} <= \alpha. For both cases, we provide lower bounds showing that these estimates are near-optimal. We conclude with a suite of experiments that both verify the implications of our theorems as well as illustrate some of the practical applications of 1-bit matrix completion. In particular, we compare our program to standard matrix completion methods on movie rating data in which users submit ratings from 1 to 5. In order to use our program, we quantize this data to a single bit, but we allow the standard matrix completion program to have access to the original ratings (from 1 to 5). Surprisingly, the approach based on binary data performs significantly better

    Online Isotonic Regression

    Get PDF
    We consider the online version of the isotonic regression problem. Given a set of linearly ordered points (e.g., on the real line), the learner must predict labels sequentially at adversarially chosen positions and is evaluated by her total squared loss compared against the best isotonic (non-decreasing) function in hindsight. We survey several standard online learning algorithms and show that none of them achieve the optimal regret exponent; in fact, most of them (including Online Gradient Descent, Follow the Leader and Exponential Weights) incur linear regret. We then prove that the Exponential Weights algorithm played over a covering net of isotonic functions has a regret bounded by O(T1/3log2/3(T))O\big(T^{1/3} \log^{2/3}(T)\big) and present a matching Ω(T1/3)\Omega(T^{1/3}) lower bound on regret. We provide a computationally efficient version of this algorithm. We also analyze the noise-free case, in which the revealed labels are isotonic, and show that the bound can be improved to O(logT)O(\log T) or even to O(1)O(1) (when the labels are revealed in isotonic order). Finally, we extend the analysis beyond squared loss and give bounds for entropic loss and absolute loss.Comment: 25 page
    corecore