485 research outputs found

    A stateless opportunistic routing protocol for underwater sensor networks

    Get PDF
    Routing packets in Underwater Sensor Networks (UWSNs) face different challenges, the most notable of which is perhaps how to deal with void communication areas. While this issue is not addressed in some underwater routing protocols, there exist some partially state-full protocols which can guarantee the delivery of packets using excessive communication overhead. However, there is no fully stateless underwater routing protocol, to the best of our knowledge, which can detect and bypass trapped nodes. A trapped node is a node which only leads packets to arrive finally at a void node. In this paper, we propose a Stateless Opportunistic Routing Protocol (SORP), in which the void and trapped nodes are locally detected in the different area of network topology to be excluded during the routing phase using a passive participation approach. SORP also uses a novel scheme to employ an adaptive forwarding area which can be resized and replaced according to the local density and placement of the candidate forwarding nodes to enhance the energy efficiency and reliability. We also make a theoretical analysis on the routing performance in case of considering the shadow zone and variable propagation delays. The results of our extensive simulation study indicate that SORP outperforms other protocols regarding the routing performance metrics

    Self-organizing Fast Routing Protocols for Underwater Acoustic Communications Networks

    Get PDF
    To address this problem, in this thesis we propose a cross-layer proactive routing initialization mechanism that does not require additional measurements and, at the same time, is energy efficient. Two routing protocols are proposed: Self-Organized Fast Routing Protocol for Radial Underwater Networks (SOFRP) for radial topology and Self-organized Proactive Routing Protocol for Non-uniformly Deployed Underwater Networks (SPRINT) for a randomly deployed network. SOFRP is based on the algorithm to recreate a radial topology with a gateway node, such that packets always use the shortest possible path from source to sink, thus minimizing consumed energy. Collisions are avoided as much as possible during the path initialization. The algorithm is suitable for 2D or 3D areas, and automatically adapts to a varying number of nodes. In SPRINT the routing path to the gateway is formed on the basis of the distance, measured by the signal strength received. The data sending node prefers to choose the neighbor node which is closest to it. It is designed to achieve high data throughput and low energy consumption of the nodes. There is a tradeoff between the throughput and the energy consumption: more distance needs more transmission energy, and more relay nodes (hops) to the destination node affects the throughput. Each hop increases the packet delay and decreases the throughput. Hence, energy consumption requires nearest nodes to be chosen as forwarding node whereas the throughput requires farthest node to be selected to minimize the number of hops. Fecha de lectura de Tesis Doctoral: 11 mayo 2020Underwater Wireless Sensor Networks (UWSNs) constitute an emerging technology for marine surveillance, natural disaster alert and environmental monitoring. Unlike terrestrial Wireless Sensor Networks (WSNs), electromagnetic waves cannot propagate more than few meters in water (high absorption rate). However, acoustic waves can travel long distances in underwater. Therefore, acoustic waves are preferred for underwater communications, but they travel very slow compare to EM waves (typical speed in water is 1500 m/s against 2x10^8 m/s for EM waves). This physical effect makes a high propagation delay and cannot be avoided, but the end-to-end packet delay it can be reduced. Routing delay is one of the major factors in end-to-end packet delay. In reactive routing protocols, when a packet arrives to a node, the node takes some time to select the node to which the data packet would be forwarded. We may reduce the routing delay for time-critical applications by using proactive routing protocols. Other two critical issues in UWSNs are determining the position of the nodes and time synchronization. Wireless sensor nodes need to determine the position of the surrounding nodes to select the next node in the path to reach the sink node. A Global Navigation Satellite System (GNSS) cannot be used because of the very short underwater range of the GNSS signal. Timestamping to estimate the distance is possible but the limited mobility of the UWSN nodes and variation in the propagation speed of the acoustic waves make the time synchronization a challenging task. For these reasons, terrestrial WSN protocols cannot be readily used for underwater acoustic networks
    corecore