16,162 research outputs found

    Evaluating testing methods by delivered reliability

    Get PDF
    There are two main goals in testing software: (1) to achieve adequate quality (debug testing), where the objective is to probe the software for defects so that these can be removed, and (2) to assess existing quality (operational testing), where the objective is to gain confidence that the software is reliable. Debug methods tend to ignore random selection of test data from an operational profile, while for operational methods this selection is all-important. Debug methods are thought to be good at uncovering defects so that these can be repaired, but having done so they do not provide a technically defensible assessment of the reliability that results. On the other hand, operational methods provide accurate assessment, but may not be as useful for achieving reliability. This paper examines the relationship between the two testing goals, using a probabilistic analysis. We define simple models of programs and their testing, and try to answer the question of how to attain program reliability: is it better to test by probing for defects as in debug testing, or to assess reliability directly as in operational testing? Testing methods are compared in a model where program failures are detected and the software changed to eliminate them. The “better” method delivers higher reliability after all test failures have been eliminated. Special cases are exhibited in which each kind of testing is superior. An analysis of the distribution of the delivered reliability indicates that even simple models have unusual statistical properties, suggesting caution in interpreting theoretical comparisons

    Learning from the Success of MPI

    Full text link
    The Message Passing Interface (MPI) has been extremely successful as a portable way to program high-performance parallel computers. This success has occurred in spite of the view of many that message passing is difficult and that other approaches, including automatic parallelization and directive-based parallelism, are easier to use. This paper argues that MPI has succeeded because it addresses all of the important issues in providing a parallel programming model.Comment: 12 pages, 1 figur

    Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    Get PDF
    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era

    The Removal of Numerical Drift from Scientific Models

    Get PDF
    Computer programs often behave differently under different compilers or in different computing environments. Relative debugging is a collection of techniques by which these differences are analysed. Differences may arise because of different interpretations of errors in the code, because of bugs in the compilers or because of numerical drift, and all of these were observed in the present study. Numerical drift arises when small and acceptable differences in values computed by different systems are integrated, so that the results drift apart. This is well understood and need not degrade the validity of the program results. Coding errors and compiler bugs may degrade the results and should be removed. This paper describes a technique for the comparison of two program runs which removes numerical drift and therefore exposes coding and compiler errors. The procedure is highly automated and requires very little intervention by the user. The technique is applied to the Weather Research and Forecasting model, the most widely used weather and climate modelling code.Comment: 12 page

    System software for the finite element machine

    Get PDF
    The Finite Element Machine is an experimental parallel computer developed at Langley Research Center to investigate the application of concurrent processing to structural engineering analysis. This report describes system-level software which has been developed to facilitate use of the machine by applications researchers. The overall software design is outlined, and several important parallel processing issues are discussed in detail, including processor management, communication, synchronization, and input/output. Based on experience using the system, the hardware architecture and software design are critiqued, and areas for further work are suggested

    AutoBayes: A System for Generating Data Analysis Programs from Statistical Models

    No full text
    Data analysis is an important scientific task which is required whenever information needs to be extracted from raw data. Statistical approaches to data analysis, which use methods from probability theory and numerical analysis, are well-founded but difficult to implement: the development of a statistical data analysis program for any given application is time-consuming and requires substantial knowledge and experience in several areas. In this paper, we describe AutoBayes, a program synthesis system for the generation of data analysis programs from statistical models. A statistical model specifies the properties for each problem variable (i.e., observation or parameter) and its dependencies in the form of a probability distribution. It is a fully declarative problem description, similar in spirit to a set of differential equations. From such a model, AutoBayes generates optimized and fully commented C/C++ code which can be linked dynamically into the Matlab and Octave environments. Code is produced by a schema-guided deductive synthesis process. A schema consists of a code template and applicability constraints which are checked against the model during synthesis using theorem proving technology. AutoBayes augments schema-guided synthesis by symbolic-algebraic computation and can thus derive closed-form solutions for many problems. It is well-suited for tasks like estimating best-fitting model parameters for the given data. Here, we describe AutoBayes's system architecture, in particular the schema-guided synthesis kernel. Its capabilities are illustrated by a number of advanced textbook examples and benchmarks
    corecore