1,014 research outputs found

    Low-power Secret-key Agreement over OFDM

    Get PDF
    Information-theoretic secret-key agreement is perhaps the most practically feasible mechanism that provides unconditional security at the physical layer to date. In this paper, we consider the problem of secret-key agreement by sharing randomness at low power over an orthogonal frequency division multiplexing (OFDM) link, in the presence of an eavesdropper. The low power assumption greatly simplifies the design of the randomness sharing scheme, even in a fading channel scenario. We assess the performance of the proposed system in terms of secrecy key rate and show that a practical approach to key sharing is obtained by using low-density parity check (LDPC) codes for information reconciliation. Numerical results confirm the merits of the proposed approach as a feasible and practical solution. Moreover, the outage formulation allows to implement secret-key agreement even when only statistical knowledge of the eavesdropper channel is available.Comment: 9 pages, 4 figures; this is the authors prepared version of the paper with the same name accepted for HotWiSec 2013, the Second ACM Workshop on Hot Topics on Wireless Network Security and Privacy, Budapest, Hungary 17-19 April 201

    Design of a simulation platform to test next generation of terrestrial DVB

    Get PDF
    Digital Terrestrial Television Broadcasting (DTTB) is a member of our daily life routine, and nonetheless, according to new users’ necessities in the fields of communications and leisure, new challenges are coming up. Moreover, the current Standard is not able to satisfy all the potential requirements. For that reason, first of all, a review of the current Standard has been performed within this work. Then, it has been identified the needing of developing a new version of the standard, ready to support enhanced services, as for example broadcasting transmissions to moving terminals or High Definition Television (HDTV) transmissions, among others. The main objective of this project is the design and development of a physical layer simulator of the whole DVB-T standard, including both the complete transmission and reception procedures. The simulator has been developed in Matlab. A detailed description of the simulator both from a functional and an architectural point of view is included. The simulator is the base for testing any possible modifications that may be included into the DVB-T2 future standard. In fact, several proposed enhancements have already been carried out and their performance has been evaluated. Specifically, the use of higher order modulation schemes, and the corresponding modifications in all the system blocks, have been included and evaluated. Furthermore, the simulator will allow testing other enhancements as the use of more efficient encoders and interleavers, MIMO technologies, and so on. A complete set of numerical results showing the performance of the different parts of the system, are presented in order to validate the correctness of the implementation and to evaluate both the current standard performance and the proposed enhancements. This work has been performed within the context of a project called FURIA, which is a strategic research project funded by the Spanish Ministry of Industry, Tourism and Commerce. A brief description of this project and its consortium has been also included herein, together with an introduction to the current situation of the DTTB in Spain (called TDT in Spanish)

    Design of a simulation platform to test next generation of terrestrial DVB

    Get PDF
    Digital Terrestrial Television Broadcasting (DTTB) is a member of our daily life routine, and nonetheless, according to new users’ necessities in the fields of communications and leisure, new challenges are coming up. Moreover, the current Standard is not able to satisfy all the potential requirements. For that reason, first of all, a review of the current Standard has been performed within this work. Then, it has been identified the needing of developing a new version of the standard, ready to support enhanced services, as for example broadcasting transmissions to moving terminals or High Definition Television (HDTV) transmissions, among others. The main objective of this project is the design and development of a physical layer simulator of the whole DVB-T standard, including both the complete transmission and reception procedures. The simulator has been developed in Matlab. A detailed description of the simulator both from a functional and an architectural point of view is included. The simulator is the base for testing any possible modifications that may be included into the DVB-T2 future standard. In fact, several proposed enhancements have already been carried out and their performance has been evaluated. Specifically, the use of higher order modulation schemes, and the corresponding modifications in all the system blocks, have been included and evaluated. Furthermore, the simulator will allow testing other enhancements as the use of more efficient encoders and interleavers, MIMO technologies, and so on. A complete set of numerical results showing the performance of the different parts of the system, are presented in order to validate the correctness of the implementation and to evaluate both the current standard performance and the proposed enhancements. This work has been performed within the context of a project called FURIA, which is a strategic research project funded by the Spanish Ministry of Industry, Tourism and Commerce. A brief description of this project and its consortium has been also included herein, together with an introduction to the current situation of the DTTB in Spain (called TDT in Spanish)

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201
    • …
    corecore