351 research outputs found

    A Hybrid Reliable Heuristic Mapping Method Based on Survivable Virtual Networks for Network Virtualization

    Get PDF
    The reliable mapping of virtual networks is one of the hot issues in network virtualization researches. Unlike the traditional protection mechanisms based on redundancy and recovery mechanisms, we take the solution of the survivable virtual topology routing problem for reference to ensure that the rest of the mapped virtual networks keeps connected under a single node failure condition in the substrate network, which guarantees the completeness of the virtual network and continuity of services. In order to reduce the cost of the substrate network, a hybrid reliable heuristic mapping method based on survivable virtual networks (Hybrid-RHM-SVN) is proposed. In Hybrid-RHM-SVN, we formulate the reliable mapping problem as an integer linear program. Firstly, we calculate the primary-cut set of the virtual network subgraph where the failed node has been removed. Then, we use the ant colony optimization algorithm to achieve the approximate optimal mapping. The links in primary-cut set should select a substrate path that does not pass through the substrate node corresponding to the virtual node that has been removed first. The simulation results show that the acceptance rate of virtual networks, the average revenue of mapping, and the recovery rate of virtual networks are increased compared with the existing reliable mapping algorithms, respectively

    A framework for traffic flow survivability in wireless networks prone to multiple failures and attacks

    Get PDF
    Transmitting packets over a wireless network has always been challenging due to failures that have always occurred as a result of many types of wireless connectivity issues. These failures have caused significant outages, and the delayed discovery and diagnostic testing of these failures have exacerbated their impact on servicing, economic damage, and social elements such as technological trust. There has been research on wireless network failures, but little on multiple failures such as node-node, node-link, and link–link failures. The problem of capacity efficiency and fast recovery from multiple failures has also not received attention. This research develops a capacity efficient evolutionary swarm survivability framework, which encompasses enhanced genetic algorithm (EGA) and ant colony system (ACS) survivability models to swiftly resolve node-node, node-link, and link-link failures for improved service quality. The capacity efficient models were tested on such failures at different locations on both small and large wireless networks. The proposed models were able to generate optimal alternative paths, the bandwidth required for fast rerouting, minimized transmission delay, and ensured the rerouting path fitness and good transmission time for rerouting voice, video and multimedia messages. Increasing multiple link failures reveal that as failure increases, the bandwidth used for rerouting and transmission time also increases. This implies that, failure increases bandwidth usage which leads to transmission delay, which in turn slows down message rerouting. The suggested framework performs better than the popular Dijkstra algorithm, proactive, adaptive and reactive models, in terms of throughput, packet delivery ratio (PDR), speed of transmission, transmission delay and running time. According to the simulation results, the capacity efficient ACS has a PDR of 0.89, the Dijkstra model has a PDR of 0.86, the reactive model has a PDR of 0.83, the proactive model has a PDR of 0.83, and the adaptive model has a PDR of 0.81. Another performance evaluation was performed to compare the proposed model's running time to that of other evaluated routing models. The capacity efficient ACS model has a running time of 169.89ms on average, while the adaptive model has a running time of 1837ms and Dijkstra has a running time of 280.62ms. With these results, capacity efficient ACS outperforms other evaluated routing algorithms in terms of PDR and running time. According to the mean throughput determined to evaluate the performance of the following routing algorithms: capacity efficient EGA has a mean throughput of 621.6, Dijkstra has a mean throughput of 619.3, proactive (DSDV) has a mean throughput of 555.9, and reactive (AODV) has a mean throughput of 501.0. Since Dijkstra is more similar to proposed models in terms of performance, capacity efficient EGA was compared to Dijkstra as follows: Dijkstra has a running time of 3.8908ms and EGA has a running time of 3.6968ms. In terms of running time and mean throughput, the capacity efficient EGA also outperforms the other evaluated routing algorithms. The generated alternative paths from these investigations demonstrate that the proposed framework works well in preventing the problem of data loss in transit and ameliorating congestion issue resulting from multiple failures and server overload which manifests when the process hangs. The optimal solution paths will in turn improve business activities through quality data communications for wireless service providers.School of ComputingPh. D. (Computer Science

    Toward Fault Adaptive Power Systems in Electric Ships

    Get PDF
    Shipboard Power Systems (SPS) play a significant role in next-generation Navy fleets. With the increasing power demand from propulsion loads, ship service loads, weaponry systems and mission systems, a stable and reliable SPS is critical to support different aspects of ship operation. It also becomes the technology-enabler to improve ship economy, efficiency, reliability, and survivability. Moreover, it is important to improve the reliability and robustness of the SPS while working under different operating conditions to ensure safe and satisfactory operation of the system. This dissertation aims to introduce novel and effective approaches to respond to different types of possible faults in the SPS. According to the type and duration, the possible faults in the Medium Voltage DC (MVDC) SPS have been divided into two main categories: transient and permanent faults. First, in order to manage permanent faults in MVDC SPS, a novel real-time reconfiguration strategy has been proposed. Onboard postault reconfiguration aims to ensure the maximum power/service delivery to the system loads following a fault. This study aims to implement an intelligent real-time reconfiguration algorithm in the RTDS platform through an optimization technique implemented inside the Real-Time Digital Simulator (RTDS). The simulation results demonstrate the effectiveness of the proposed real-time approach to reconfigure the system under different fault situations. Second, a novel approach to mitigate the effect of the unsymmetrical transient AC faults in the MVDC SPS has been proposed. In this dissertation, the application of combined Static Synchronous Compensator (STATCOM)-Super Conducting Fault Current Limiter (SFCL) to improve the stability of the MVDC SPS during transient faults has been investigated. A Fluid Genetic Algorithm (FGA) optimization algorithm is introduced to design the STATCOM\u27s controller. Moreover, a multi-objective optimization problem has been formulated to find the optimal size of SFCL\u27s impedance. In the proposed scheme, STATCOM can assist the SFCL to keep the vital load terminal voltage close to the normal state in an economic sense. The proposed technique provides an acceptable post-disturbance and postault performance to recover the system to its normal situation over the other alternatives

    Nature-inspired survivability: Prey-inspired survivability countermeasures for cloud computing security challenges

    Get PDF
    As cloud computing environments become complex, adversaries have become highly sophisticated and unpredictable. Moreover, they can easily increase attack power and persist longer before detection. Uncertain malicious actions, latent risks, Unobserved or Unobservable risks (UUURs) characterise this new threat domain. This thesis proposes prey-inspired survivability to address unpredictable security challenges borne out of UUURs. While survivability is a well-addressed phenomenon in non-extinct prey animals, applying prey survivability to cloud computing directly is challenging due to contradicting end goals. How to manage evolving survivability goals and requirements under contradicting environmental conditions adds to the challenges. To address these challenges, this thesis proposes a holistic taxonomy which integrate multiple and disparate perspectives of cloud security challenges. In addition, it proposes the TRIZ (Teorija Rezbenija Izobretatelskib Zadach) to derive prey-inspired solutions through resolving contradiction. First, it develops a 3-step process to facilitate interdomain transfer of concepts from nature to cloud. Moreover, TRIZ’s generic approach suggests specific solutions for cloud computing survivability. Then, the thesis presents the conceptual prey-inspired cloud computing survivability framework (Pi-CCSF), built upon TRIZ derived solutions. The framework run-time is pushed to the user-space to support evolving survivability design goals. Furthermore, a target-based decision-making technique (TBDM) is proposed to manage survivability decisions. To evaluate the prey-inspired survivability concept, Pi-CCSF simulator is developed and implemented. Evaluation results shows that escalating survivability actions improve the vitality of vulnerable and compromised virtual machines (VMs) by 5% and dramatically improve their overall survivability. Hypothesis testing conclusively supports the hypothesis that the escalation mechanisms can be applied to enhance the survivability of cloud computing systems. Numeric analysis of TBDM shows that by considering survivability preferences and attitudes (these directly impacts survivability actions), the TBDM method brings unpredictable survivability information closer to decision processes. This enables efficient execution of variable escalating survivability actions, which enables the Pi-CCSF’s decision system (DS) to focus upon decisions that achieve survivability outcomes under unpredictability imposed by UUUR

    Exploring Heuristics for the Vehicle Routing Problem with Split Deliveries and Time Windows

    Get PDF
    This dissertation investigates the Vehicle Routing Problem with Split Deliveries and Time Windows. This problem assumes a depot of homogeneous vehicles and set of customers with deterministic demands requiring delivery. Split deliveries allow multiple visits to a customer and time windows restrict the time during which a delivery can be made. Several construction and local search heuristics are tested to determine their relative usefulness in generating solutions for this problem. This research shows a particular subset of the local search operators is particularly influential on solution quality and run time. Conversely, the construction heuristics tested do not significantly impact either. Several problem features are also investigated to determine their impact. Of the features explored, the ratio of customer demand to vehicle ratio revealed a significant impact on solution quality and influence on the effectiveness of the heuristics tested. Finally, this research introduces an ant colony metaheuristic coupled with a local search heuristic embedded within a dynamic program seeking to solve a Military Inventory Routing Problem with multiple-customer routes, stochastic supply, and deterministic demand. Also proposed is a suite of test problems for the Military Inventory Routing Problem

    Particle swarm optimization for routing and wavelength assignment in next generation WDM networks.

    Get PDF
    PhDAll-optical Wave Division Multiplexed (WDM) networking is a promising technology for long-haul backbone and large metropolitan optical networks in order to meet the non-diminishing bandwidth demands of future applications and services. Examples could include archival and recovery of data to/from Storage Area Networks (i.e. for banks), High bandwidth medical imaging (for remote operations), High Definition (HD) digital broadcast and streaming over the Internet, distributed orchestrated computing, and peak-demand short-term connectivity for Access Network providers and wireless network operators for backhaul surges. One desirable feature is fast and automatic provisioning. Connection (lightpath) provisioning in optically switched networks requires both route computation and a single wavelength to be assigned for the lightpath. This is called Routing and Wavelength Assignment (RWA). RWA can be classified as static RWA and dynamic RWA. Static RWA is an NP-hard (non-polynomial time hard) optimisation task. Dynamic RWA is even more challenging as connection requests arrive dynamically, on-the-fly and have random connection holding times. Traditionally, global-optimum mathematical search schemes like integer linear programming and graph colouring are used to find an optimal solution for NP-hard problems. However such schemes become unusable for connection provisioning in a dynamic environment, due to the computational complexity and time required to undertake the search. To perform dynamic provisioning, different heuristic and stochastic techniques are used. Particle Swarm Optimisation (PSO) is a population-based global optimisation scheme that belongs to the class of evolutionary search algorithms and has successfully been used to solve many NP-hard optimisation problems in both static and dynamic environments. In this thesis, a novel PSO based scheme is proposed to solve the static RWA case, which can achieve optimal/near-optimal solution. In order to reduce the risk of premature convergence of the swarm and to avoid selecting local optima, a search scheme is proposed to solve the static RWA, based on the position of swarm‘s global best particle and personal best position of each particle. To solve dynamic RWA problem, a PSO based scheme is proposed which can provision a connection within a fraction of a second. This feature is crucial to provisioning services like bandwidth on demand connectivity. To improve the convergence speed of the swarm towards an optimal/near-optimal solution, a novel chaotic factor is introduced into the PSO algorithm, i.e. CPSO, which helps the swarm reach a relatively good solution in fewer iterations. Experimental results for PSO/CPSO based dynamic RWA algorithms show that the proposed schemes perform better compared to other evolutionary techniques like genetic algorithms, ant colony optimization. This is both in terms of quality of solution and computation time. The proposed schemes also show significant improvements in blocking probability performance compared to traditional dynamic RWA schemes like SP-FF and SP-MU algorithms
    • …
    corecore