247 research outputs found

    ReHand - a portable assistive rehabilitation hand exoskeleton

    Get PDF
    This dissertation presents a synthesis of a novel underactuated exoskeleton (namely ReHand2) thought and designed for a task-oriented rehabilitation and/or for empower the human hand. The first part of this dissertation shows the current context about the robotic rehabilitation with a focus on hand pathologies, which influence the hand capability. The chapter is concluded with the presentation of ReHand2. The second chapter describes the human hand biomechanics. Starting from the definition of human hand anatomy, passing through anthropometric data, to taxonomy on hand grasps and finger constraints, both from static and dynamic point of view. In addition, some information about the hand capability are given. The third chapter analyze the current state of the art in hand exoskeleton for rehabilitation and empower tasks. In particular, the chapter presents exoskeleton technologies, from mechanisms to sensors, passing though transmission and actuators. Finally, the current state of the art in terms of prototype and commercial products is presented. The fourth chapter introduces the concepts of underactuation with the basic explanation and the classical notation used typically in the prosthetic field. In addition, the chapter describe also the most used differential elements in the prosthetic, follow by a statical analysis. Moreover typical transmission tree at inter-finger level as well as the intra- finger underactuation are explained . The fifth chapter presents the prototype called ReHand summarizing the device description and explanation of the working principle. It describes also the kinetostatic analysis for both, inter- and the intra-finger modules. in the last section preliminary results obtained with the exoskeleton are shown and discussed, attention is pointed out on prototype’s problems that have carry out at the second version of the device. The sixth chapter describes the evolution of ReHand, describing the kinematics and dynamics behaviors. In particular, for the mathematical description is introduced the notation used in order to analyze and optimize the geometry of the entire device. The introduced model is also implemented in Matlab Simulink environment. Finally, the chapter presents the new features. The seventh chapter describes the test bench and the methodologies used to evaluate the device statical, and dynamical performances. The chapter presents and discuss the experimental results and compare them with simulated one. Finally in the last chapter the conclusion about the ReHand project are proposed as well as the future development. In particular, the idea to test de device in relevant environments. In addition some preliminary considerations about the thumb and the wrist are introduced, exploiting the possibility to modify the entire layout of the device, for instance changing the actuator location

    Intuitive Human-Machine Interfaces for Non-Anthropomorphic Robotic Hands

    Get PDF
    As robots become more prevalent in our everyday lives, both in our workplaces and in our homes, it becomes increasingly likely that people who are not experts in robotics will be asked to interface with robotic devices. It is therefore important to develop robotic controls that are intuitive and easy for novices to use. Robotic hands, in particular, are very useful, but their high dimensionality makes creating intuitive human-machine interfaces for them complex. In this dissertation, we study the control of non-anthropomorphic robotic hands by non-roboticists in two contexts: collaborative manipulation and assistive robotics. In the field of collaborative manipulation, the human and the robot work side by side as independent agents. Teleoperation allows the human to assist the robot when autonomous grasping is not able to deal sufficiently well with corner cases or cannot operate fast enough. Using the teleoperator’s hand as an input device can provide an intuitive control method, but finding a mapping between a human hand and a non-anthropomorphic robot hand can be difficult, due to the hands’ dissimilar kinematics. In this dissertation, we seek to create a mapping between the human hand and a fully actuated, non-anthropomorphic robot hand that is intuitive enough to enable effective real-time teleoperation, even for novice users. We propose a low-dimensional and continuous teleoperation subspace which can be used as an intermediary for mapping between different hand pose spaces. We first propose the general concept of the subspace, its properties and the variables needed to map from the human hand to a robot hand. We then propose three ways to populate the teleoperation subspace mapping. Two of our mappings use a dataglove to harvest information about the user's hand. We define the mapping between joint space and teleoperation subspace with an empirical definition, which requires a person to define hand motions in an intuitive, hand-specific way, and with an algorithmic definition, which is kinematically independent, and uses objects to define the subspace. Our third mapping for the teleoperation subspace uses forearm electromyography (EMG) as a control input. Assistive orthotics is another area of robotics where human-machine interfaces are critical, since, in this field, the robot is attached to the hand of the human user. In this case, the goal is for the robot to assist the human with movements they would not otherwise be able to achieve. Orthotics can improve the quality of life of people who do not have full use of their hands. Human-machine interfaces for assistive hand orthotics that use EMG signals from the affected forearm as input are intuitive and repeated use can strengthen the muscles of the user's affected arm. In this dissertation, we seek to create an EMG based control for an orthotic device used by people who have had a stroke. We would like our control to enable functional motions when used in conjunction with a orthosis and to be robust to changes in the input signal. We propose a control for a wearable hand orthosis which uses an easy to don, commodity forearm EMG band. We develop an supervised algorithm to detect a user’s intent to open and close their hand, and pair this algorithm with a training protocol which makes our intent detection robust to changes in the input signal. We show that this algorithm, when used in conjunction with an orthosis over several weeks, can improve distal function in users. Additionally, we propose two semi-supervised intent detection algorithms designed to keep our control robust to changes in the input data while reducing the length and frequency of our training protocol

    A Wearable Robotic Hand for Hand-over-Hand Imitation Learning

    Full text link
    Dexterous manipulation through imitation learning has gained significant attention in robotics research. The collection of high-quality expert data holds paramount importance when using imitation learning. The existing approaches for acquiring expert data commonly involve utilizing a data glove to capture hand motion information. However, this method suffers from limitations as the collected information cannot be directly mapped to the robotic hand due to discrepancies in their degrees of freedom or structures. Furthermore,it fails to accurately capture force feedback information between the hand and objects during the demonstration process. To overcome these challenges, this paper presents a novel solution in the form of a wearable dexterous hand, namely Hand-over-hand Imitation learning wearable RObotic Hand (HIRO Hand),which integrates expert data collection and enables the implementation of dexterous operations. This HIRO Hand empowers the operator to utilize their own tactile feedback to determine appropriate force, position, and actions, resulting in more accurate imitation of the expert's actions. We develop both non-learning and visual behavior cloning based controllers allowing HIRO Hand successfully achieves grasping and in-hand manipulation ability.Comment: 7 page
    • …
    corecore