152 research outputs found

    The global monsoon system: research and forecast

    Get PDF
    The main objective of this workshop was to provide a forum for discussion between researchers and forecasters on the current status of monsoon forecasting and on priorities and opportunities for monsoon research. WMO hopes that through this series of quadrennial workshops, the following goals can be accomplished: (a) to update forecasters on the latest reseach findings and forecasting technology; (b) to update researchers on monsoon analysis and forecasting; (c) to identify basic and applied research priorities and opportunities; (d) to identify opportunities and priorities for acquiring observations; (e) to discuss the approach of a web-based training document in order to update forecasters on developments of direct relevance to monsoon forecasting

    CLIVAR Exchanges - African Monsoon Multidisciplinary Analysis (AMMA)

    No full text

    CLIVAR Exchanges No. 34. The Asian Monsoon

    No full text

    The WWRP Polar Prediction Project (PPP)

    Get PDF
    Mission statement: ā€œPromote cooperative international research enabling development of improved weather and environmental prediction services for the polar regions, on time scales from hours to seasonalā€. Increased economic, transportation and research activities in polar regions are leading to more demands for sustained and improved availability of predictive weather and climate information to support decision-making. However, partly as a result of a strong emphasis of previous international efforts on lower and middle latitudes, many gaps in weather, sub-seasonal and seasonal forecasting in polar regions hamper reliable decision making in the Arctic, Antarctic and possibly the middle latitudes as well. In order to advance polar prediction capabilities, the WWRP Polar Prediction Project (PPP) has been established as one of three THORPEX (THe Observing System Research and Predictability EXperiment) legacy activities. The aim of PPP, a ten year endeavour (2013-2022), is to promote cooperative international research enabling development of improved weather and environmental prediction services for the polar regions, on hourly to seasonal time scales. In order to achieve its goals, PPP will enhance international and interdisciplinary collaboration through the development of strong linkages with related initiatives; strengthen linkages between academia, research institutions and operational forecasting centres; promote interactions and communication between research and stakeholders; and foster education and outreach. Flagship research activities of PPP include sea ice prediction, polar-lower latitude linkages and the Year of Polar Prediction (YOPP) - an intensive observational, coupled modelling, service-oriented research and educational effort in the period mid-2017 to mid-2019

    Associations of interannual variation in summer tropospheric ozone with the Western Pacific Subtropical High in China from 1999 to 2017

    Get PDF
    Associations between tropospheric ozone (O3) and climate variations have been extensively investigated worldwide. However, given the lack of historical O3 monitoring data, the knowledge gaps regarding the influences of climate variations on long-term O3 trends in China remain. The present study used a tropospheric O3 dataset from the summers of 1999 to 2017 simulated by an atmospheric chemistry model to explore the linkage between summer O3 and a dominant atmospheric circulation system ā€“ the Western Pacific Subtropical High (WPSH) pressure ā€“ on an interannual basis in China. During this period, both WPSH strength and O3 concentrations in eastern and central China illustrated a growing trend. An EOF analysis was conducted to examine significant summer O3 characteristics and patterns and their potential connections with the WPSH. We find that the correlation between the first principal component of summer ozone concentration in the EOF analysis and the WPSH reached 0.56 (Pā‰¤0.01) in China from 1999 to 2017. We show that the WPSH determines interannual fluctuations of summer O3, whereas O3 precursor emissions contribute primarily to the O3 long-term trend. Our results reveal that the WPSH plays a vital role in O3 perturbation in the eastern seaboard regions and inland China. Precursor emissions made more significant contributions of up to 60ā€‰% to increasing O3 trends in the inland urban agglomerations than coastal regions in eastern and southern China. The strongest contribution of meteorological conditions associated with the WPSH to summer O3 occurred in the Yangtze River Delta (YRD), accounting for over 9ā€‰% to ozone perturbations from 1999 to 2017. We find that the effect of the WPSH on regional O3 depends on the spatial proximity to the WPSH. We attributed the effects of the WPSH on O3 interannual variations to the changes in air temperature, precipitation, and winds associated with the WPSH's intensity and positions.</p

    Electromagnetic Radiation

    Get PDF
    The application of electromagnetic radiation in modern life is one of the most developing technologies. In this timely book, the authors comprehensively treat two integrated aspects of electromagnetic radiation, theory and application. It covers a wide scope of practical topics, including medical treatment, telecommunication systems, and radiation effects. The book sections have clear presentation, some state of the art examples, which makes this book an indispensable reference book for electromagnetic radiation applications

    Coupling between surface ozone and leaf area index in a chemical transport model: strength of feedback and implications for ozone air quality and vegetation health

    Get PDF
    Tropospheric ozone is an air pollutant that substantially harms vegetation and is also strongly dependent on various vegetation-mediated processes. The interdependence between ozone and vegetation may constitute feedback mechanisms that can alter ozone concentration itself but have not been considered in most studies to date. In this study we examine the importance of dynamic coupling between surface ozone and leaf area index (LAI) in shaping ozone air quality and vegetation. We first implement an empirical scheme for ozone damage on vegetation in the Community Land Model (CLM) and simulate the steady-state responses of LAI to long-term exposure to a range of prescribed ozone levels (from 0 to 100&thinsp;ppb). We find that most plant functional types suffer a substantial decline in LAI as ozone level increases. Based on the CLM-simulated results, we develop and implement in the GEOS-Chem chemical transport model a parameterization that computes fractional changes in monthly LAI as a function of local mean ozone levels. By forcing LAI to respond to ozone concentrations on a monthly timescale, the model simulates ozoneā€“LAI coupling dynamically via biogeochemical processes including biogenic volatile organic compound (VOC) emissions and dry deposition, without the complication from meteorological changes. We find that ozone-induced damage on LAI can lead to changes in ozone concentrations by āˆ’1.8 to +3&thinsp;ppb in boreal summer, with a corresponding ozone feedback factor of āˆ’0.1 to +0.6 that represents an overall self-amplifying effect from ozoneā€“LAI coupling. Substantially higher simulated ozone due to strong positive feedbacks is found in most tropical forests, mainly due to the ozone-induced reductions in LAI and dry deposition velocity, whereas reduced isoprene emission plays a lesser role in these low-NOx environments. In high-NOx regions such as the eastern US, Europe, and China, however, the feedback effect is much weaker and even negative in some regions, reflecting the compensating effects of reduced dry deposition and reduced isoprene emission (which reduces ozone in high-NOx environments). In remote, low-LAI regions, including most of the Southern Hemisphere, the ozone feedback is generally slightly negative due to the reduced transport of NOxā€“VOC reaction products that serve as NOx reservoirs. This study represents the first step to accounting for dynamic ozoneā€“vegetation coupling in a chemical transport model with ramifications for a more realistic joint assessment of ozone air quality and ecosystem health.</p
    • ā€¦
    corecore