7 research outputs found

    An insight into the present capabilities of national metrology institutes for measuring sparkle

    Get PDF
    Large effect pigments, due to their strongly specular reflectance, produce a special visual texture known as sparkle. The use of these pigments in many industries (automotive, cosmetic, paper, architecture...) makes the control of this visual texture necessary. A measurement scale has to be developed, so that traceability can be provided by national metrology institutes (NMI) or designated institutes. Some of them (PTB, METAS, CMI and CSIC) have tested their existing capabilities to measure sparkle, and their results are presented. Two possible sources of systematic errors have been identified: inadequate illumination and collection full-angles, and inadequate size of the virtual aperture used to assess the luminous flux reflected on the effect pigments. The measurement scale of sparkle used in this comparison is thoroughly presented. This comparison will allow the methodology to measure sparkle to be improved.This article was written within the EMPIR 16NRM08 Project “Bidirectional reflectance definition” (BiRD). The EMPIR is jointly funded by the EMPIR participating countries within EURAMET and the European Union. The EMPIR is jointly funded by the EMPIR participating countries within EURAMET and the European Union. Part of the authors (Instituto de Óptica “Daza de Valdés”) are also grateful to Comunidad de Madrid for funding the project S2018/NMT-4326-SINFOTON2-C

    3D Shape Measurement of Objects in Motion and Objects with Complex Surfaces

    Get PDF
    This thesis aims to address the issues caused by high reflective surface and object with motion in the three dimensional (3D) shape measurement based on phase shifting profilometry (PSP). Firstly, the influence of the reflectivity of the object surface on the fringe patterns is analysed. One of the essential factors related to phase precision is modulation index, which has a direct relationship with the surface reflectivity. A comparative study focusing on the modulation index of different materials is presented. The distribution of modulation index for different material samples is statistically analysed, which leads to the conclusion that the modulation index is determined by the diffuse reflectivity. Then the method based on optimized combination of multiple reflected image patterns is proposed to address the saturation issue and improve the accuracy for the reconstruction of object with high reflectivity.A set of phase shifted sinusoidal fringe patterns with different exposure time are projected to the object and then captured by camera. Then a set of masks are generated to select the data for the compositing. Maximalsignal-to-noise ratio combining model is employed to form the composite images pattern. The composite images are then used to phase mapping.Comparing to the method only using the highest intensity of pixels for compositing image, the signal noise ratio (SNR) of composite image is increased due to more efficient use of information carried by the images

    Measuring photometric and spectral radiometric bi-directional transmission and reflection in a video-goniospectrometer

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (p. 175-185).The effective use of complex fenestration systems (CFS) in buildings requires a detailed knowledge of their optical spectral and directional properties. Bidirectional scattering functions (BSDFs), either in transmission (BTDFs) or reflection (BRDFs), are used to assess these properties and gather information vital to CFS design and analysis. To enable this analysis in a time and budget conscious manner, an innovative video goniospectrometer, called the Heliodome, has been developed. The Heliodome relies on filtered digital imaging, mathematical methods, and the use of a unique semi-transparent hemispheroidal light collection system to investigate the spectral and angular selectivity of CFS across the visible and near infrared portions of the solar spectrum. This thesis seeks to describe the most recent advancements in the development of the Heliodome-the completion and characterization of the spheroidal mirror component, the integration of a spectral estimation method, the photometric calibration of the camera, and the final automation and validation-- enabling the measurement of both spectral radiometric BSDFs and photometric BSDFs. The completion of this research should support the advancement of CFS that improve the use of daylighting in a space, reducing energy consumption and managing solar gains while improving visual comfort in buildings.by Eleanor Stokes.S.M

    Caractérisation des surfaces glacées de Mars par imagerie hyperspectrale : inversion du transfert radiatif

    Get PDF
    Mars has a complex climate, characterized by carbon dioxide and water cycles, and dust transport at all scales. These cycles are mainly controlled by the seasonal condensation of CO₂ and water ice deposits at high latitudes during the polar night and their sublimation during the local spring. There are a lot of interactions between the CO₂ , water and dust cycles on Mars and they influence each other. An active seasonal process illustrates particularly well these links: the cryoventing, cold CO₂ gas jets triggered by seasonal sublimation of CO₂ deposits, which can put dust from the regolith in suspension into the atmosphere durably, and whose activity seems to be modulated by the exchange of water at the surface.The purpose of this thesis is to allow the use of the available hyperspectral imaging data to their full potential, to bring new constraints on seasonal exchanges between surface and atmosphere and the interactions between the different cycles (CO₂ , water , dust), focusing on cold gas jets. To achieve this, a semi-analytical radiative transfer model in compact ices and an effective inversion method were developed and validated.The radiative transfer model describes the interaction of light with a surface quantitatively, using the following parameters: thickness of the layer, volume proportions and grain-sizes of impurities, surface roughness. It is based on several key assumptions: geometrical optics, piecewise-continuous media quasi-spherical inclusions. The two-stream approximation is used for the radiative transfer inside the layer, but the surface specular reflectance is estimated taking into account the variability of the facets orientations from the surface roughness. This model was validated both numerically and on laboratory data.The inversion method consists in exploring synthetic databases generated by the radiative transfer model and determining the most likely sets of parameters to reproduce a given measure. The inversion is based on the Bayesian formalism: the manipulated variables are described by probability density functions. This allows to take into account realistic uncertainties on the data and enables to calculate a posteriori uncertainties on the result of the inversion.A focused study was conducted on a area of particular interest, to test and prove the applicability of this approach to the massive inversion of spectro-imaging data. The dune-field of Richardson Crater (72°S, 180°W) was chosen because it shows strong interactions between the water and CO₂ cycles, a major seasonal cryoventing activity, but also a large amount of data available and a high quality temporal monitoring. The monitoring of surface characteristics on this site shows a decrease in the thickness of the ice during the spring consistently with climate models simulations. We were able to estimate and monitor the content of water and dust in order to discuss the formation scenario of cold jets.La planète Mars est le siège d'un climat complexe, caractérisé par des cycles du dioxyde de carbone et de l'eau, ainsi qu'un transport de poussière à toutes les échelles. Ces cycles se manifestent par la condensation saisonnière aux pôles de dépôts de glace de CO₂ et d'eau pendant la nuit polaire, et leur sublimation pendant le printemps local. Les cycles du CO₂ , de l'eau et des poussières sur Mars sont intimement liés. Un processus saisonnier actif illustre bien ces liens : les jets de gaz froid, déclenchés par la sublimation saisonnière des dépôts de CO₂ , pouvant mettre en suspension des poussières du régolite de manière durable dans l'atmosphère, et dont l'activité semble être modulée par les échanges d'eau à la surface.L'objectif de cette thèse est de permettre l'utilisation des données d'imagerie hyperspectrale disponibles au maximum de leur potentiel, pour apporter de nouvelles contraintes sur les échanges saisonniers entre surface et atmosphère et sur les interactions entre les différents cycles (CO₂ , eau, poussières), en se focalisant sur les jets de gaz froid. Pour cela, un modèle semi-analytique de transfert radiatif dans les glaces compactes, ainsi qu'une méthode efficace d'inversion ont été développés et validés.Le modèle de transfert radiatif permet de décrire l'interaction de la lumière avec une couche de glace de manière quantitative d'après les paramètres suivants : épaisseur de la couche, proportions volumiques et tailles des impuretés, rugosité de la surface. Il repose sur plusieurs hypothèses majeures : optique géométrique, milieux continus par morceaux, inclusions quasi-sphériques. L'approximation des deux flux est utilisée pour le transfert au sein de la couche mais la réflexion spéculaire en surface est estimée en tenant compte de la variabilité des facettes de la rugosité surfacique. Ce modèle a été validé numériquement et sur des données de laboratoire et des tests numériques. La méthode d'inversion consiste à créer des bases de données synthétiques d’après le modèle de transfert radiatif pour déterminer les jeux de paramètres les plus probables pour reproduire une mesure donnée. L'inversion repose sur le formalisme bayésien : les grandeurs manipulées sont décrites par des densités de probabilités. Ceci permet la prise en compte de manière réaliste des incertitudes sur la donnée et le calcul d'une incertitude a posteriori sur le résultat de l'inversion.Une étude ciblée d'un site d'intérêt a été menée pour tester et démonter l'applicabilité de cette démarche à l'inversion massive de données de spectro-imagerie.Nous avons déterminé l’état de surface du champ de dunes du cratère de Richardson (72°S, 180°W), choisi car il présente de fortes interactions entre cycle de l'eau et du CO₂ , une important activité saisonnière de jets froids mais aussi une grande quantité de données disponible et une haute qualité du suivi temporel. Le suivi des caractéristiques de surface sur ce site montre une diminution de l'épaisseur de la couche de glace pendant le printemps cohérente avec les estimations des modèles de climat. Nous avons pu estimer et faire le suivi du contenu en eau et en poussière pour discuter le scénario de formation des jets froids. Nous avons proposé un nouveau mécanisme de mise en suspension des petits grains d’eau

    The Sixth International Conference on Mars Polar Science and Exploration : September 5-9, 2016, Reykjavik, Iceland

    Get PDF
    The conference is designed to pull together the current state of Mars polar research from many fields, including geology, atmospheric, and climate sciences.European Geophysical Union Icelandic Meteorological Office International Association of Cryospheric Sciences Lunar and Planetary Institute (LPI) NASA Mars Program Office Planetary Science Institute Southwest Research Institute Université de Nantes University of Iceland in ReykjavikConference Organizing Committee, Isaac Smith, Convener, Southwest Research Institute [and 7 others] ; Science Organizing Committee, Wendy Calvin, University of Nevada [and 13 others

    Design and performance of photo-electrochemical reactors with Fe2O3 photo-anodes for water splitting

    No full text
    Sources of clean and sustainable energy are important vectors for economic growth and development. The current global energy supply depends heavily on fossil fuels, which in the future may have added costs of carbon dioxide emissions. This makes technology such as direct water splitting from harvesting solar energy in photo-electrochemical (PEC) systems potentially attractive. The principle of this technology utilises semiconductors to absorb photons of energy greater than their band gap energy, generating an electron-hole (absence of electron) pair. The hole could oxidise water to produce oxygen at the anode, while the electrons could reduce water to form hydrogen at the cathode. This project aims to design, model, characterise the performance and optimise a photo-electrochemical reactor that could efficiently harvest and store solar energy by splitting water to produce hydrogen and oxygen. α-Fe2O3 ,which is a cheap and abundant material, has shown promise as a photo-anode material, so was chosen as the photo-anode in the development of the PEC reactor. α-Fe2O3 thin films were produced by spray pyrolysis of alcoholic FeIII solutions onto fluorine-doped tin oxide film on glass. Effects of deposition precursor, post deposition heat treatment and SnIV-doping were studied. Results showed that both SnIV-doping and heat treatment were required to produce the best results (photocurrent of ca. 1-2 Am-2 at applied potential of 0.5 V vs. HgO |Hg). A charge carrier transport model was developed to understand and predict the behaviour of the Fe2O3. The model suggested that the magnitude of photocurrent was dependent on the photo-electrochemical reaction rate at the electrolyte | electrode interface, and would be limited by the intensity of illuminated photon flux. Operating the reactor at higher temperatures favoured the electrolysis process in the absence of light, but experimental results showed it was unfavourable for the net photo-generation of charge. A reactor system with a 0.1 m x 0.1 m photo-anode, Ti/Pt cathode and cation-permeable membrane was built to investigate the effects of operating parameters and operational issues of process scale up. COMSOL Multiphysics™ software was used to model the reactor and to study the reactor performance effects of fluid flow, light intensity and electrical potential drop in the thin conducting layer on glass. Results showed that at electrode area of 10-2 m2 scale, a significant electrical potential drop occurred across the photo-anode, due to its sheet resistance, resulting in non-uniform distribution of current density / rate of H2 (and O2) production (solar to hydrogen conversion efficiency of 0.16%), much of the photo-anode area being inactive. A reactor model was developed to provide a better understanding of larger-scale PEC reactor performance and was used to re-design and optimise the next reactor prototype
    corecore