91,395 research outputs found

    Worldsheet Properties of Extremal Correlators in AdS/CFT

    Full text link
    We continue to investigate planar four point worldsheet correlators of string theories which are conjectured to be duals of free gauge theories. We focus on the extremal correlators <Tr(Z^{J_1}(x)) Tr(Z^{J_2}(y)) Tr(Z^{J_3}(z)) Tr(\bar{Z}^{J}(0))> of N=4N = 4 SYM theory, and construct the corresponding worldsheet correlators in the limit when the Ji>>1J_i >> 1. The worldsheet correlator gets contributions, in this limit, from a whole family of Feynman graphs. We find that it is supported on a {\it curve} in the moduli space parametrised by the worldsheet crossratio. In a further limit of the spacetime correlators we find this curve to be the unit circle. In this case, we also check that the entire worldsheet correlator displays the appropriate crossing symmetry. The non-renormalization of the extremal correlators in the 't Hooft coupling offers a potential window for a comparison of these results with those from strong coupling.Comment: 27 pages, 5 figure

    Dual quadratic differentials and entire minimal graphs in Heisenberg space

    Full text link
    We define holomorphic quadratic differentials for spacelike surfaces with constant mean curvature in the Lorentzian homogeneous spaces L(κ,τ)\mathbb{L}(\kappa,\tau) with isometry group of dimension 4, which are dual to the Abresch-Rosenberg differentials in the Riemannian counterparts E(κ,τ)\mathbb{E}(\kappa,\tau), and obtain some consequences. On the one hand, we give a very short proof of the Bernstein problem in Heisenberg space, and provide a geometric description of the family of entire graphs sharing the same differential in terms of a 2-parameter conformal deformation. On the other hand, we prove that entire minimal graphs in Heisenberg space have negative Gauss curvature.Comment: 19 page

    Sharing Social Network Data: Differentially Private Estimation of Exponential-Family Random Graph Models

    Get PDF
    Motivated by a real-life problem of sharing social network data that contain sensitive personal information, we propose a novel approach to release and analyze synthetic graphs in order to protect privacy of individual relationships captured by the social network while maintaining the validity of statistical results. A case study using a version of the Enron e-mail corpus dataset demonstrates the application and usefulness of the proposed techniques in solving the challenging problem of maintaining privacy \emph{and} supporting open access to network data to ensure reproducibility of existing studies and discovering new scientific insights that can be obtained by analyzing such data. We use a simple yet effective randomized response mechanism to generate synthetic networks under ϵ\epsilon-edge differential privacy, and then use likelihood based inference for missing data and Markov chain Monte Carlo techniques to fit exponential-family random graph models to the generated synthetic networks.Comment: Updated, 39 page

    Feynman integral relations from parametric annihilators

    Full text link
    We study shift relations between Feynman integrals via the Mellin transform through parametric annihilation operators. These contain the momentum space IBP relations, which are well-known in the physics literature. Applying a result of Loeser and Sabbah, we conclude that the number of master integrals is computed by the Euler characteristic of the Lee-Pomeransky polynomial. We illustrate techniques to compute this Euler characteristic in various examples and compare it with numbers of master integrals obtained in previous works.Comment: v2: new section 3.1 added, several misprints corrected and additional remark
    corecore