210,774 research outputs found

    Secure Cloud-Edge Deployments, with Trust

    Get PDF
    Assessing the security level of IoT applications to be deployed to heterogeneous Cloud-Edge infrastructures operated by different providers is a non-trivial task. In this article, we present a methodology that permits to express security requirements for IoT applications, as well as infrastructure security capabilities, in a simple and declarative manner, and to automatically obtain an explainable assessment of the security level of the possible application deployments. The methodology also considers the impact of trust relations among different stakeholders using or managing Cloud-Edge infrastructures. A lifelike example is used to showcase the prototyped implementation of the methodology

    A Pattern Language for High-Performance Computing Resilience

    Full text link
    High-performance computing systems (HPC) provide powerful capabilities for modeling, simulation, and data analytics for a broad class of computational problems. They enable extreme performance of the order of quadrillion floating-point arithmetic calculations per second by aggregating the power of millions of compute, memory, networking and storage components. With the rapidly growing scale and complexity of HPC systems for achieving even greater performance, ensuring their reliable operation in the face of system degradations and failures is a critical challenge. System fault events often lead the scientific applications to produce incorrect results, or may even cause their untimely termination. The sheer number of components in modern extreme-scale HPC systems and the complex interactions and dependencies among the hardware and software components, the applications, and the physical environment makes the design of practical solutions that support fault resilience a complex undertaking. To manage this complexity, we developed a methodology for designing HPC resilience solutions using design patterns. We codified the well-known techniques for handling faults, errors and failures that have been devised, applied and improved upon over the past three decades in the form of design patterns. In this paper, we present a pattern language to enable a structured approach to the development of HPC resilience solutions. The pattern language reveals the relations among the resilience patterns and provides the means to explore alternative techniques for handling a specific fault model that may have different efficiency and complexity characteristics. Using the pattern language enables the design and implementation of comprehensive resilience solutions as a set of interconnected resilience patterns that can be instantiated across layers of the system stack.Comment: Proceedings of the 22nd European Conference on Pattern Languages of Program

    Measuring usability for application software using the quality in use integration measurement model

    Get PDF
    User interfaces of application software are designed to make user interaction as efficient and as simple as possible. Market accessibility of any application software is determined by the usability of its user interfaces. A poorly designed user interface will have little value no matter how powerful the program is. Thus, it is significantly important to measure usability during the system development lifecycle in order to avoid user disappointment. Various methods and standards that help measure usability have been developed. However, these methods define usability inconsistently, which makes software engineers hesitant in implementing these methods or standards. The Quality in Use Integrated Measurement (QUIM) model is a consolidated approach for measuring usability through 10 factors, 26 criteria, and 127 metrics. It decomposes usability into factors, criteria, and metrics, and it is a hierarchical model that helps developers with no or little background of usability metrics. Among 127 metrics of QUIM, essential efficiency (EE) is the most specific metric used to measure the usability of user interfaces through an equation. This study involves a comparative analysis between three case studies that use the QUIM model to measure usability in terms of EE for three case studies: (1) Public University Registration System, (2) Restaurant Menu Ordering System, and (3) ATM system. A comparison is made based on the percentage of EE for each element of the use cases in each use case diagram. The results obtained revealed that the user interface design for Restaurant Menu Ordering System scored the highest percentage of EE, thus proving to be the most user-friendly application software among its counterparts

    AMaĻ‡oSā€”Abstract Machine for Xcerpt

    Get PDF
    Web query languages promise convenient and efficient access to Web data such as XML, RDF, or Topic Maps. Xcerpt is one such Web query language with strong emphasis on novel high-level constructs for effective and convenient query authoring, particularly tailored to versatile access to data in different Web formats such as XML or RDF. However, so far it lacks an efficient implementation to supplement the convenient language features. AMaĻ‡oS is an abstract machine implementation for Xcerpt that aims at efficiency and ease of deployment. It strictly separates compilation and execution of queries: Queries are compiled once to abstract machine code that consists in (1) a code segment with instructions for evaluating each rule and (2) a hint segment that provides the abstract machine with optimization hints derived by the query compilation. This article summarizes the motivation and principles behind AMaĻ‡oS and discusses how its current architecture realizes these principles

    Guidelines for the Provision of Garbage Reception Facilities at Ports Under MARPOL Annex V

    Get PDF
    This report offers guidelines for the provision of adequate port reception facilities for vessel-generated garbage under the requirements of Annex V of the International Convention for the Prevention of Pollution From Ships, 1973 (MARPOL 73/78), Regulations for the Prevention of Pollution by Garbage from Ships. MARPOL Annex V prohibits at-sea disposal of plastic materials from vessels, and specifies the distance from shore at which other materials may be dumped. Annex V also requires the provision of port reception facilities for garbage, but it does not specify these facilities or how they are to be provided. Since the at-sea dumping restrictions apply to all vessels, the reception facility requirement applies to all ports, terminals, and marinas that serve vessels. These guidelines were prepared to assist port owners and operators in meeting their obligation to provide adequate reception facilities for garbage. The report synthesizes available information and draws upon experience from the first years ofimplementation of MARPOL Annex V. (PDF file contains 55 pages.

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page
    • ā€¦
    corecore