427 research outputs found

    Algebraic Properties of Qualitative Spatio-Temporal Calculi

    Full text link
    Qualitative spatial and temporal reasoning is based on so-called qualitative calculi. Algebraic properties of these calculi have several implications on reasoning algorithms. But what exactly is a qualitative calculus? And to which extent do the qualitative calculi proposed meet these demands? The literature provides various answers to the first question but only few facts about the second. In this paper we identify the minimal requirements to binary spatio-temporal calculi and we discuss the relevance of the according axioms for representation and reasoning. We also analyze existing qualitative calculi and provide a classification involving different notions of a relation algebra.Comment: COSIT 2013 paper including supplementary materia

    Qualitative Reasoning about Relative Directions : Computational Complexity and Practical Algorithm

    Get PDF
    Qualitative spatial reasoning (QSR) enables cognitive agents to reason about space using abstract symbols. Among several aspects of space (e.g., topology, direction, distance) directional information is useful for agents navigating in space. Observers typically describe their environment by specifying the relative directions in which they see other objects or other people from their point of view. As such, qualitative reasoning about relative directions, i.e., determining whether a given statement involving relative directions is true, can be advantageously used for applications, for example, robot navigation, computer-aided design and geographical information systems. Unfortunately, despite the apparent importance of reasoning about relative directions, QSR-research so far could not provide efficient decision procedures for qualitative reasoning about relative directions. Accordingly, the question about how to devise an efficient decision procedure for qualitative reasoning about relative directions has meanwhile turned to the question about whether an efficient decision procedure exists at all. Answering the latter existential question, which requires a formal analysis of relative directions from a computational complexity point of view, has remained an open problem in the field of QSR. The present thesis solves the open problem by proving that there is no efficient decision procedure for qualitative reasoning about relative directions, even if only left or right relations are involved. This is surprising as it contradicts the early premise of QSR believed by many researchers in and outside the field, that is, abstracting from an infinite domain to a finite set of relations naturally leads to efficient reasoning. As a consequence of this rather negative result, efficient reasoning with any of the well-known relative direction calculi (OPRAm, DCC, DRA, LR) is impossible. Indeed, the present thesis shows that all the relative direction calculi belong to one and the same class of ∃R-complete problems, which are the problems that can be reduced to the NP-hard decision problem of the existential theory of the reals, and vice versa. Nevertheless, in practice, many interesting computationally hard AI problems can be tackled by means of approximative algorithms and heuristics. In the same vein, the present thesis shows that qualitative reasoning about relative directions can also be tackled with approximative algorithms. In the thesis we develop the qualitative calculus SVm which allows for a practical algorithm for qualitative reasoning about relative directions. SVm also provides an effective semi-decision procedure for the OPRAm calculus, the most versatile one among the relative direction calculi. In this thesis we substantiate the usefulness of SVm by applying it in the marine navigation domain

    Qualitative Spatial Reasoning about Relative Orientation --- A Question of Consistency ---

    Get PDF
    Abstract. After the emergence of Allen s Interval Algebra Qualitative Spatial Reasoning has evolved into a fruitful field of research in artificial intelligence with possible applications in geographic information systems (GIS) and robot navigation Qualitative Spatial Reasoning abstracts from the detailed metric description of space using rich mathematical theories and restricts its language to a finite, often rather small, set of relations that fulfill certain properties. This approach is often deemed to be cognitively adequate . A major question in qualitative spatial reasoning is whether a description of a spatial situation given as a constraint network is consistent. The problem becomes a hard one since the domain of space (often R2 ) is infinite. In contrast many of the interesting problems for constraint satisfaction have a finite domain on which backtracking methods can be used. But because of the infinity of its domains these methods are generally not applicable to Qualitative Spatial Reasoning. Anyhow the method of path consistency or rather its generalization algebraic closure turned out to be helpful to a certain degree for many qualitative spatial calculi. The problem regarding this method is that it depends on the existence of a composition table, and calculating this table is not an easy task. For example the dipole calculus (operating on oriented dipoles) DRAf has 72 base relations and binary composition, hence its composition table has 5184 entries. Finding all these entries by hand is a hard, long and error-prone task. Finding them using a computer is also not easy, since the semantics of DRAf in the Euclidean Plane, its natural domain, rely on non-linear inequalities. This is not a special problem of the DRAf calculus. In fact, all calculi dealing with relative orientation share the property of having semantics based on non-linear inequalities in the Euclidean plane. This not only makes it hard to find a composition table, it also makes it particularly hard to decide consistency for these calculi. As shown in [79] algebraic closure is always just an approximation to consistency for these calculi, but it is the only method that works fast. Methods like Gröbner reasoning can decide consistency for these calculi but only for small constraint networks. Still finding a composition table for DRAf is a fruitful task, since we can use it analyze the properties of composition based reasoning for such a calculus and it is a starting point for the investigation of the quality of the approximation of consistency for this calculus. We utilize a new approach for calculating the composition table for DRAf using condensed semantics, i.e. the domain of the calculus is compressed in such a way that only finitely many possible configurations need to be investigated. In fact, only the configurations need to be investigated that turn out to represent special characteristics for the placement of three lines in the plane. This method turns out to be highly efficient for calculating the composition table of the calculus. Another method of obtaining a composition table is borrowing it via a suitable morphism. Hence, we investigate morphisms between qualitative spatial calculi. Having the composition table is not the end but rather the beginning of the problem. With that table we can compute algebraically closed refinements of constraint networks, but how meaningful is this process? We know that all constraint networks for which such a refinement does not exist are inconsistent, but what about the rest? In fact, they may be consistent or not. If they are all consistent, then we can be happy, since algebraic closure would decide consistency for the calculus at hand. We investigate LR, DRAf and DRAfp and show that for all these calculi algebraic closure does not decide consistency. In fact, for the LR calculus algebraic closure is an extremely bad approximation of consistency. For this calculus we introduce a new method for the approximation of consistency based on triangles, that performs far better than algebraic closure. A major weak spot of the field of Qualitative Spatial Reasoning is the area of applications. It is hard to refute the accusation of qualitative spatial calculi having only few applications so far. As a step into the direction of scrutinizing the applicability of these calculi, we examine the performance of DRA and OPRA in the issue of describing and navigating street networks based on local observations. Especially for OPRA we investigate a factorization of the base relations that is deemed cognitively adequate . Whenever possible we use real-world data in these investigations obtained from OpenStreetMap

    05491 Abstracts Collection -- Spatial Cognition: Specialization and Integration

    Get PDF
    From 04.12.05 to 09.12.05, the Dagstuhl Seminar 05491 ``Spatial Cognition: Specialization and Integration\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Framework development for providing accessibility to qualitative spatial calculi

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Qualitative spatial reasoning deals with knowledge about an infinite spatial domain using a finite set of qualitative relations without using numerical computation. Qualitative knowledge is relative knowledge where we obtain the knowledge on the basis of comparison of features with in the object domain rather then using some external scales. Reasoning is an intellectual facility by which, conclusions are drawn from premises and is present in our everyday interaction with the geographical world. The kind of reasoning that human being relies on is based on commonsense knowledge in everyday situations. During the last decades a multitude of formal calculi over spatial relations have been proposed by focusing on different aspects of space like topology, orientation and distance. Qualitative spatial reasoning engines like SparQ and GQR represents space and reasoning about the space based on qualitative spatial relations and bring qualitative reasoning closer to the geographic applications. Their relations and certain operations defined in qualitative calculi use to infer new knowledge on different aspects of space. Today GIS does not support common-sense reasoning due to limitation for how to formalize spatial inferences. It is important to focus on common sense geographic reasoning, reasoning as it is performed by human. Human perceive and represents geographic information qualitatively, the integration of reasoner with spatial application enables GIS users to represent and extract geographic information qualitatively using human understandable query language. In this thesis, I designed and developed common API framework using platform independent software like XML and JAVA that used to integrate qualitative spatial reasoning engines (SparQ) with GIS application. SparQ is set of modules that structured to provides different reasoning services. SparQ supports command line instructions and it has a specific syntax as set of commands. The developed API provides interface between GIS application and reasoning engine. It establishes connection with reasoner over TCP/IP, takes XML format queries as input from GIS application and converts into SparQ module specific syntax. Similarly it extracts given result, converts it into defined XML format and passes it to GIS application over the same TCP/IP connection. The most challenging part of thesis was SparQ syntax analysis for inputs and their outputs. Each module in Sparq takes module specific query syntax and generates results in multiple syntaxes like; error, simple result and result with comments. Reasoner supports both binary and ternary calculi. The input query syntax for binary-calculi is different for ternary-calculi in the terms of constraint-networks. Based on analysis I, identified commonalities between input query syntaxes for both binary and ternary calculi and designed XML structures for them. Similarly I generalized SparQ results into five major categories and designed XML structures. For ternary-calculi, I considered constraint-reasoning module and their specific operations and designed XML structure for both of their inputs and outputs

    Geospatial images in the acquisition of spatial knowledge for wayfinding

    Get PDF
    Geospatial images such as maps and aerial photographs are important sources of spatial knowledge that people use for wayfinding. The rapid development of geodata acquisition and digital graphics has recently led to rather complete geographic coverage of both traditional and novel types of geospatial images. Divergent types of geospatial images vary in their support of human acquisition of spatial knowledge. However evaluative studies about the acquisition of spatial knowledge from the diversity of geospatial images have been rare. In this article we review a variety of literature about the acquisition of spatial knowledge while paying particular attention to the role of geospatial images. Based on the literature we present a framework of image parameters that characterize the acquisition of spatial knowledge from geospatial images: vantage point number of visible vertical features and visual realism. With the help of the framework we evaluate commonly used geospatial images. In concordance with the previous experiments our evaluation shows that the different types of geospatial images have large differences in the types of spatial knowledge they support and to what extent. However further experimentation is needed in order to better understand the human cognitive needs for geospatial images and to develop more useful geospatial images for wayfinding
    • …
    corecore