295 research outputs found

    Relational transducers for declarative networking

    Full text link
    Motivated by a recent conjecture concerning the expressiveness of declarative networking, we propose a formal computation model for "eventually consistent" distributed querying, based on relational transducers. A tight link has been conjectured between coordination-freeness of computations, and monotonicity of the queries expressed by such computations. Indeed, we propose a formal definition of coordination-freeness and confirm that the class of monotone queries is captured by coordination-free transducer networks. Coordination-freeness is a semantic property, but the syntactic class that we define of "oblivious" transducers also captures the same class of monotone queries. Transducer networks that are not coordination-free are much more powerful

    Recent Advances in Declarative Networking

    Get PDF
    Declarative networking is a programming methodology that enables developers to concisely specify network protocols and services, and directly compile these specifications into a dataflow framework for execution. This paper describes recent advances in declarative networking, tracing its evolution from a rapid prototyping framework towards a platform that serves as an important bridge connecting formal theories for reasoning about protocol correctness and actual implementations. In particular, the paper focuses on the use of declarative networking for addressing four main challenges in the distributed systems development cycle: the generation of safe routing implementations, debugging, security and privacy, and optimizing distributed systems

    Verification of Sometimes Termination of Lazy-Bounded Declarative Distributed Systems

    Full text link
    Declarative Distributed Systems (DDSs) are distributed systems grounded in logic programming. Although DDS model-checking is undecidable in general, we detect decidable cases by tweaking the data-source bounds, the message expressiveness, and the channel type.Comment: Published in the online proceedings of the ESSLLI 2021 Student Sessio

    Blazes: Coordination Analysis for Distributed Programs

    Full text link
    Distributed consistency is perhaps the most discussed topic in distributed systems today. Coordination protocols can ensure consistency, but in practice they cause undesirable performance unless used judiciously. Scalable distributed architectures avoid coordination whenever possible, but under-coordinated systems can exhibit behavioral anomalies under fault, which are often extremely difficult to debug. This raises significant challenges for distributed system architects and developers. In this paper we present Blazes, a cross-platform program analysis framework that (a) identifies program locations that require coordination to ensure consistent executions, and (b) automatically synthesizes application-specific coordination code that can significantly outperform general-purpose techniques. We present two case studies, one using annotated programs in the Twitter Storm system, and another using the Bloom declarative language.Comment: Updated to include additional materials from the original technical report: derivation rules, output stream label

    New Directions in Cloud Programming

    Full text link
    Nearly twenty years after the launch of AWS, it remains difficult for most developers to harness the enormous potential of the cloud. In this paper we lay out an agenda for a new generation of cloud programming research aimed at bringing research ideas to programmers in an evolutionary fashion. Key to our approach is a separation of distributed programs into a PACT of four facets: Program semantics, Availablity, Consistency and Targets of optimization. We propose to migrate developers gradually to PACT programming by lifting familiar code into our more declarative level of abstraction. We then propose a multi-stage compiler that emits human-readable code at each stage that can be hand-tuned by developers seeking more control. Our agenda raises numerous research challenges across multiple areas including language design, query optimization, transactions, distributed consistency, compilers and program synthesis
    corecore