880 research outputs found

    An Integrated Engineering-Computation Framework for Collaborative Engineering: An Application in Project Management

    Get PDF
    Today\u27s engineering applications suffer from a severe integration problem. Engineering, the entire process, consists of a myriad of individual, often complex, tasks. Most computer tools support particular tasks in engineering, but the output of one tool is different from the others\u27. Thus, the users must re-enter the relevant information in the format required by another tool. Moreover, usually in the development process of a new product/process, several teams of engineers with different backgrounds/responsibilities are involved, for example mechanical engineers, cost estimators, manufacturing engineers, quality engineers, and project manager. Engineers need a tool(s) to share technical and managerial information and to be able to instantly access the latest changes made by one member, or more, in the teams to determine right away the impacts of these changes in all disciplines (cost, time, resources, etc.). In other words, engineers need to participate in a truly collaborative environment for the achievement of a common objective, which is the completion of the product/process design project in a timely, cost effective, and optimal manner. In this thesis, a new framework that integrates the capabilities of four commercial software, Microsoft Excelâ„¢ (spreadsheet), Microsoft Projectâ„¢ (project management), What\u27s Best! (an optimization add-in), and Visual Basicâ„¢ (programming language), with a state-of-the-art object-oriented database (knowledge medium), InnerCircle2000â„¢ is being presented and applied to handle the Cost-Time Trade-Off problem in project networks. The result was a vastly superior solution over the conventional solution from the viewpoint of data handling, completeness of solution space, and in the context of a collaborative engineering-computation environment

    Assessment of classical database models for representing solids

    Get PDF
    Solid modeling is being explored as a method of representing three dimensional parts for mechanical design and manufacturing. This work analyzes the data storage requirements of the Boundary Representation and Constructive Solid Geometry methods of representing solid models. The ability of the database models (Hierarchical, Network, and Relational) to support solid modeling needs is evaluated. The goal is to determine the database model(s) best suited to store and manage the graphical data for solid model representat ions . Background information about mechanical engineering, graphics, and database models is presented. Entity-Relationship diagrams are used to define data requ irements

    An Object memory for an object-oriented database management system

    Get PDF
    Ankara : The Department of Computer Engineering and Information Sciences and the Institute of Engineering and Sciences of Bilkent Univ. , 1988.Thesis (Master's) -- Bilkent University), 1988.Includes bibliographical references leaves 86-89.Object-oriented paradigm is an approach that can be applied in various areas of computing. In this approach, each entity is represented by an object which captures the state and the behaviour of the entity. In this thesis, a focused survey of object-oriented paradigm in general and object-oriented database management systems in particular has been carried out and an object memory module is designed and implemented for an object-oriented database management system prototype. The object memory module handles the representation, access and manipulation of objects in the system and provides the primitive functions that are necessary in the development of the prototype.Kesim, F NihanM.S

    Object Oriented Terrain Databases For Visual Simulators

    Get PDF
    Report on a project to develop methodologies and solutions to the problem of representation and utilization of dynamic terrain on a real-time simulator

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Flexibility in Data Management

    Get PDF
    With the ongoing expansion of information technology, new fields of application requiring data management emerge virtually every day. In our knowledge culture increasing amounts of data and work force organized in more creativity-oriented ways also radically change traditional fields of application and question established assumptions about data management. For instance, investigative analytics and agile software development move towards a very agile and flexible handling of data. As the primary facilitators of data management, database systems have to reflect and support these developments. However, traditional database management technology, in particular relational database systems, is built on assumptions of relatively stable application domains. The need to model all data up front in a prescriptive database schema earned relational database management systems the reputation among developers of being inflexible, dated, and cumbersome to work with. Nevertheless, relational systems still dominate the database market. They are a proven, standardized, and interoperable technology, well-known in IT departments with a work force of experienced and trained developers and administrators. This thesis aims at resolving the growing contradiction between the popularity and omnipresence of relational systems in companies and their increasingly bad reputation among developers. It adapts relational database technology towards more agility and flexibility. We envision a descriptive schema-comes-second relational database system, which is entity-oriented instead of schema-oriented; descriptive rather than prescriptive. The thesis provides four main contributions: (1)~a flexible relational data model, which frees relational data management from having a prescriptive schema; (2)~autonomous physical entity domains, which partition self-descriptive data according to their schema properties for better query performance; (3)~a freely adjustable storage engine, which allows adapting the physical data layout used to properties of the data and of the workload; and (4)~a self-managed indexing infrastructure, which autonomously collects and adapts index information under the presence of dynamic workloads and evolving schemas. The flexible relational data model is the thesis\' central contribution. It describes the functional appearance of the descriptive schema-comes-second relational database system. The other three contributions improve components in the architecture of database management systems to increase the query performance and the manageability of descriptive schema-comes-second relational database systems. We are confident that these four contributions can help paving the way to a more flexible future for relational database management technology

    Flexibility in Data Management

    Get PDF
    With the ongoing expansion of information technology, new fields of application requiring data management emerge virtually every day. In our knowledge culture increasing amounts of data and work force organized in more creativity-oriented ways also radically change traditional fields of application and question established assumptions about data management. For instance, investigative analytics and agile software development move towards a very agile and flexible handling of data. As the primary facilitators of data management, database systems have to reflect and support these developments. However, traditional database management technology, in particular relational database systems, is built on assumptions of relatively stable application domains. The need to model all data up front in a prescriptive database schema earned relational database management systems the reputation among developers of being inflexible, dated, and cumbersome to work with. Nevertheless, relational systems still dominate the database market. They are a proven, standardized, and interoperable technology, well-known in IT departments with a work force of experienced and trained developers and administrators. This thesis aims at resolving the growing contradiction between the popularity and omnipresence of relational systems in companies and their increasingly bad reputation among developers. It adapts relational database technology towards more agility and flexibility. We envision a descriptive schema-comes-second relational database system, which is entity-oriented instead of schema-oriented; descriptive rather than prescriptive. The thesis provides four main contributions: (1)~a flexible relational data model, which frees relational data management from having a prescriptive schema; (2)~autonomous physical entity domains, which partition self-descriptive data according to their schema properties for better query performance; (3)~a freely adjustable storage engine, which allows adapting the physical data layout used to properties of the data and of the workload; and (4)~a self-managed indexing infrastructure, which autonomously collects and adapts index information under the presence of dynamic workloads and evolving schemas. The flexible relational data model is the thesis\' central contribution. It describes the functional appearance of the descriptive schema-comes-second relational database system. The other three contributions improve components in the architecture of database management systems to increase the query performance and the manageability of descriptive schema-comes-second relational database systems. We are confident that these four contributions can help paving the way to a more flexible future for relational database management technology
    • …
    corecore