246 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Learning to Make Predictions on Graphs with Autoencoders

    Full text link
    We examine two fundamental tasks associated with graph representation learning: link prediction and semi-supervised node classification. We present a novel autoencoder architecture capable of learning a joint representation of both local graph structure and available node features for the multi-task learning of link prediction and node classification. Our autoencoder architecture is efficiently trained end-to-end in a single learning stage to simultaneously perform link prediction and node classification, whereas previous related methods require multiple training steps that are difficult to optimize. We provide a comprehensive empirical evaluation of our models on nine benchmark graph-structured datasets and demonstrate significant improvement over related methods for graph representation learning. Reference code and data are available at https://github.com/vuptran/graph-representation-learningComment: Published as a conference paper at IEEE DSAA 201
    • …
    corecore