4,065 research outputs found

    Induction of Interpretable Possibilistic Logic Theories from Relational Data

    Full text link
    The field of Statistical Relational Learning (SRL) is concerned with learning probabilistic models from relational data. Learned SRL models are typically represented using some kind of weighted logical formulas, which make them considerably more interpretable than those obtained by e.g. neural networks. In practice, however, these models are often still difficult to interpret correctly, as they can contain many formulas that interact in non-trivial ways and weights do not always have an intuitive meaning. To address this, we propose a new SRL method which uses possibilistic logic to encode relational models. Learned models are then essentially stratified classical theories, which explicitly encode what can be derived with a given level of certainty. Compared to Markov Logic Networks (MLNs), our method is faster and produces considerably more interpretable models.Comment: Longer version of a paper appearing in IJCAI 201

    UTP2: Higher-Order Equational Reasoning by Pointing

    Full text link
    We describe a prototype theorem prover, UTP2, developed to match the style of hand-written proof work in the Unifying Theories of Programming semantical framework. This is based on alphabetised predicates in a 2nd-order logic, with a strong emphasis on equational reasoning. We present here an overview of the user-interface of this prover, which was developed from the outset using a point-and-click approach. We contrast this with the command-line paradigm that continues to dominate the mainstream theorem provers, and raises the question: can we have the best of both worlds?Comment: In Proceedings UITP 2014, arXiv:1410.785

    Sketched Answer Set Programming

    Full text link
    Answer Set Programming (ASP) is a powerful modeling formalism for combinatorial problems. However, writing ASP models is not trivial. We propose a novel method, called Sketched Answer Set Programming (SkASP), aiming at supporting the user in resolving this issue. The user writes an ASP program while marking uncertain parts open with question marks. In addition, the user provides a number of positive and negative examples of the desired program behaviour. The sketched model is rewritten into another ASP program, which is solved by traditional methods. As a result, the user obtains a functional and reusable ASP program modelling her problem. We evaluate our approach on 21 well known puzzles and combinatorial problems inspired by Karp's 21 NP-complete problems and demonstrate a use-case for a database application based on ASP.Comment: 15 pages, 11 figures; to appear in ICTAI 201

    A review of the state of the art in Machine Learning on the Semantic Web: Technical Report CSTR-05-003

    Get PDF

    Efficient Learning and Evaluation of Complex Concepts in Inductive Logic Programming

    No full text
    Inductive Logic Programming (ILP) is a subfield of Machine Learning with foundations in logic programming. In ILP, logic programming, a subset of first-order logic, is used as a uniform representation language for the problem specification and induced theories. ILP has been successfully applied to many real-world problems, especially in the biological domain (e.g. drug design, protein structure prediction), where relational information is of particular importance. The expressiveness of logic programs grants flexibility in specifying the learning task and understandability to the induced theories. However, this flexibility comes at a high computational cost, constraining the applicability of ILP systems. Constructing and evaluating complex concepts remain two of the main issues that prevent ILP systems from tackling many learning problems. These learning problems are interesting both from a research perspective, as they raise the standards for ILP systems, and from an application perspective, where these target concepts naturally occur in many real-world applications. Such complex concepts cannot be constructed or evaluated by parallelizing existing top-down ILP systems or improving the underlying Prolog engine. Novel search strategies and cover algorithms are needed. The main focus of this thesis is on how to efficiently construct and evaluate complex hypotheses in an ILP setting. In order to construct such hypotheses we investigate two approaches. The first, the Top Directed Hypothesis Derivation framework, implemented in the ILP system TopLog, involves the use of a top theory to constrain the hypothesis space. In the second approach we revisit the bottom-up search strategy of Golem, lifting its restriction on determinate clauses which had rendered Golem inapplicable to many key areas. These developments led to the bottom-up ILP system ProGolem. A challenge that arises with a bottom-up approach is the coverage computation of long, non-determinate, clauses. Prolog’s SLD-resolution is no longer adequate. We developed a new, Prolog-based, theta-subsumption engine which is significantly more efficient than SLD-resolution in computing the coverage of such complex clauses. We provide evidence that ProGolem achieves the goal of learning complex concepts by presenting a protein-hexose binding prediction application. The theory ProGolem induced has a statistically significant better predictive accuracy than that of other learners. More importantly, the biological insights ProGolem’s theory provided were judged by domain experts to be relevant and, in some cases, novel
    • …
    corecore