133,468 research outputs found

    Converting relational databases into object relational databases

    Get PDF
    This paper proposes an approach for migrating existing Relational DataBases (RDBs) into Object-Relational DataBases (ORDBs). The approach is superior to existing proposals as it can generate not only the target schema but also the data instances. The solution takes an existing RDB as input, enriches its metadata representation with required semantics, and generates an enhanced canonical data model, which captures essential characteristics of the target ORDB, and is suitable for migration. A prototype has been developed, which migrates successfully RDBs into ORDBs (Oracle 11g) based on the canonical model. The experimental results were very encouraging, demonstrating that the proposed approach is feasible, efficient and correct

    User Defined Types and Nested Tables in Object Relational Databases

    Get PDF
    Bernadette Byrne, Mary Garvey, ‘User Defined Types and Nested Tables in Object Relational Databases’, paper presented at the United Kingdom Academy for Information Systems 2006: Putting Theory into Practice, Cheltenham, UK, 5-7 June, 2006.There has been much research and work into incorporating objects into databases with a number of object databases being developed in the 1980s and 1990s. During the 1990s the concept of object relational databases became popular, with object extensions to the relational model. As a result, several relational databases have added such extensions. There has been little in the way of formal evaluation of object relational extensions to commercial database systems. In this work an airline flight logging system, a real-world database application, was taken and a database developed using a regular relational database and again using object relational extensions, allowing the evaluation of the relational extensions.Peer reviewe

    Temporal Support in Relational Databases

    Get PDF
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. © 2012 Higher Education AcademyThis paper examines the current state of temporal support in relational databases and the type of situations where we need that support. There has been much research in this area and there were attempts in the American National Standards Institute (ANSI) and the International Organisation for Standardisation (ISO) standards committees in the late 1990s to add an extension called TSQL2 to the existing SQL standard. However no agreement could be reached as it was felt that some of the suggested extensions did not fit well with the relational model, as well as being difficult to implement. TSQL2 was abandoned and since then vendors have added their own data types, and if we are lucky, operators too in an attempt to provide support. However, to novice students and database designers it is often not apparent why some temporal concepts are difficult to deal with in a relational database. In teaching these concepts to students we use a Case Study (based on a real example) which illustrates the problems of providing temporal support by using examples of the data types which could be useful to solve temporal problems and the operators which are necessary to provide this

    NOSQL design for analytical workloads: Variability matters

    Get PDF
    Big Data has recently gained popularity and has strongly questioned relational databases as universal storage systems, especially in the presence of analytical workloads. As result, co-relational alternatives, commonly known as NOSQL (Not Only SQL) databases, are extensively used for Big Data. As the primary focus of NOSQL is on performance, NOSQL databases are directly designed at the physical level, and consequently the resulting schema is tailored to the dataset and access patterns of the problem in hand. However, we believe that NOSQL design can also benefit from traditional design approaches. In this paper we present a method to design databases for analytical workloads. Starting from the conceptual model and adopting the classical 3-phase design used for relational databases, we propose a novel design method considering the new features brought by NOSQL and encompassing relational and co-relational design altogether.Peer ReviewedPostprint (author's final draft
    • …
    corecore