122,822 research outputs found

    Object Oriented Database Management Systems-Concepts, Advantages, Limitations and Comparative Study with Relational Database Management Systems

    Get PDF
    Object Oriented Databases stores data in the form of objects. An Object is something uniquely identifiable which models a real world entity and has got state and behaviour. In Object Oriented based Databases capabilities of Object based paradigm for Programming and databases are combined due remove the limitations of Relational databases and on the demand of some advanced applications. In this paper, need of Object database, approaches for Object database implementation, requirements for database to an Object database, Perspectives of Object database, architecture approaches for Object databases, the achievements and weakness of Object Databases and comparison with relational database are discussed

    Modeling Relationships Using The Relational And Object-Oriented Data Models

    Get PDF
    We compare the performance of naive data modelers in modeling association, generalization, and aggregation relationships with the relational and object-oriented data models. We first develop research hypotheses based on the properties of expressiveness, minimality, and unique semantic interpretation to analyze the effectiveness of the two models. We then test our hypotheses in anexperiment with 22 naive modelers. The findings of our study support the notion that, to be effective, a data model should satisfy these three propertie

    Object-oriented data modeling

    Full text link
    The object-oriented paradigm models local behavior, and to a lesser extent, the structure of a problem. Semantic data models describe structure and semantics. This thesis unifies the behavioral focus of the object-oriented paradigm with the structural and semantic focus of semantic data models. The approach contains expressive abstractions to model static and derived data, semantics, and behavior. The abstractions keep the data model closer to the problem domain, and can be translated into a relational (or other) implementation. The paper makes six contributions. First, a comprehensive set of data structuring abstractions are described. Second, the abstractions are compared to the entity-relationship and relational models. Third, semantic information inherent in the functional representation of the abstractions is identified. Fourth, a set of behavioral abstractions are described. Fifth, an algorithm that describes the dynamics between mathematically derived attributes of cooperating objects is presented. Sixth, weaknesses of object-oriented programming languages are identified

    Evolution of Object-Oriented Database Systems

    Get PDF
    Data bases are quintessential part of most modern web and mobile applications. In most part, relational databases dominate the database market but the evolution of object-oriented databases has provided users and developers with an alternative option. Object-oriented databases provide a number of advantages over relational databases like ease of extensibility, custom data models, provision for modelling complex data structures and faster access time. But they do lack in certain areas and have no strict standards and implementation mostly depends upon the vendor. Nevertheless, object-oriented databases are slowly finding their way into database market, especially in the area of large-scale databases. But the long history of relational databases keeps them alive as tough competitor and the future seems to be going towards object-relational databases

    Object Oriented Database Management Systems-Concepts, Advantages, Limitations and Comparative Study with Relational Database Management Systems

    Get PDF
    Object Oriented Databases stores data in the form of objects. An Object is something uniquely identifiable which models a real world entity and has got state and behaviour. In Object Oriented based Databases capabilities of Object based paradigm for Programming and databases are combined due remove the limitations of Relational databases and on the demand of some advanced applications. In this paper, need of Object database, approaches for Object database implementation, requirements for database to an Object database, Perspectives of Object database, architecture approaches for Object databases, the achievements and weakness of Object Databases and comparison with relational database are discussed

    An Extensible "SCHEMA-LESS" Database Framework for Managing High-Throughput Semi-Structured Documents

    Get PDF
    Object-Relational database management system is an integrated hybrid cooperative approach to combine the best practices of both the relational model utilizing SQL queries and the object-oriented, semantic paradigm for supporting complex data creation. In this paper, a highly scalable, information on demand database framework, called NETMARK, is introduced. NETMARK takes advantages of the Oracle 8i object-relational database using physical addresses data types for very efficient keyword search of records spanning across both context and content. NETMARK was originally developed in early 2000 as a research and development prototype to solve the vast amounts of unstructured and semistructured documents existing within NASA enterprises. Today, NETMARK is a flexible, high-throughput open database framework for managing, storing, and searching unstructured or semi-structured arbitrary hierarchal models, such as XML and HTML

    UML Class Diagram or Entity Relationship Diagram : An Object Relational Impedance Mismatch

    Get PDF
    It is now nearly 30 years since Peter Chen’s watershed paper “The Entity-Relationship Model –towards a Unified View of Data”. [1] The entity relationship model and variations and extensions to ithave been taught in colleges and universities for many years. In his original paper Peter Chen looked at converting his new ER model to the then existing data structure diagrams for the Network model. In recent years there has been a tendency to use a Unified Modelling Language (UML) class diagram forconceptual modeling for relational databases, and several popular course text books use UMLnotation to some degree [2] [3]. However Object and Relational technology are based on different paradigms. In the paper we argue that the UML class diagram is more of a logical model (implementation specific). ER Diagrams on theother hand, are at a conceptual level of database design dealing with the main items and their relationships and not with implementation specific detail. UML focuses on OOAD (Object Oriented Analysis and Design) and is navigational and program dependent whereas the relational model is set based and exhibits data independence. The ER model provides a well-established set of mapping rules for mapping to a relational model. In this paper we look specifically at the areas which can cause problems for the novice databasedesigner due to this conceptual mismatch of two different paradigms. Firstly, transferring the mapping of a weak entity from an Entity Relationship model to UML and secondly the representation of structural constraints between objects. We look at the mixture of notations which students mistakenly use when modeling. This is often the result of different notations being used on different courses throughout their degree. Several of the popular text books at the moment use either a variation of ER,UML, or both for teaching database modeling. At the moment if a student picks up a text book they could be faced with either; one of the many ER variations, UML, UML and a variation of ER both covered separately, or UML and ER merged together. We regard this problem as a conceptual impedance mismatch. This problem is documented in [21] who have produced a catalogue of impedance mismatch problems between object-relational and relational paradigms. We regard the problems of using UML class diagrams for relational database design as a conceptual impedance mismatch as the Entity Relationship model does not have the structures in the model to deal with Object Oriented concepts Keywords: EERD, UML Class Diagram, Relational Database Design, Structural Constraints, relational and object database impedance mismatch. The ER model was originally put forward by Chen [1] and subsequently extensions have been added to add further semantics to the original model; mainly the concepts of specialisation, generalisation and aggregation. In this paper we refer to an Entity-Relationship model (ER) as the basic model and an extended or enhanced entity-relationship model (EER) as a model which includes the extra concepts. The ER and EER models are also often used to aid communication between the designer and the user at the requirements analysis stage. In this paper when we use the term “conceptual model” we mean a model that is not implementation specific.ISBN: 978-84-616-3847-5 3594Peer reviewe

    Supporting the object-oriented database on the Kernel Database System

    Get PDF
    If a single operating system can support multitudes of different programming languages and data structures, a database system can support a variety of data models and data languages. In this thesis, a Kernel Database System (KDS) supporting classical data models and data languages (i.e., hierarchical, network, relational, and functional) is used to support a demonstration object oriented data model and data language. This thesis extends previous research by accommodating an object-oriented-data-model-and-language interface in the KDS. Consequently, the research shows that it is feasible to use the KDS to support modem data models and languages as well as classical ones. This thesis details the KDS design, Insert operation, and Display function. This thesis also details how to implement modifications to the Test-Interface so that the KDS can support the object-oriented database. This thesis proves complex data structures in an object-oriented data model can be realized using an attribute-based data model which is the kernel data model of the KDS. Second, it details how the KDS is designed showing why no changes needed to be made to the KDS to implement the object-oriented toy database. Third, it argues the advantages of using a KDS in the database-system design. The KDS design produces savings in costs from compatability, reduced training, expandability, and software reuse.http://archive.org/details/supportingobject1094535152NANAU.S. Navy (U.S.N.) author.;Korean Army author

    Flattening an object algebra to provide performance

    Get PDF
    Algebraic transformation and optimization techniques have been the method of choice in relational query execution, but applying them in object-oriented (OO) DBMSs is difficult due to the complexity of OO query languages. This paper demonstrates that the problem can be simplified by mapping an OO data model to the binary relational model implemented by Monet, a state-of-the-art database kernel. We present a generic mapping scheme to flatten data models and study the case of straightforward OO model. We show how flattening enabled us to implement a query algebra, using only a very limited set of simple operations. The required primitives and query execution strategies are discussed, and their performance is evaluated on the 1-GByte TPC-D (Transaction-processing Performance Council's Benchmark D), showing that our divide-and-conquer approach yields excellent result
    • 

    corecore