2,324 research outputs found

    A framework for modelling mobile radio access networks for intelligent fault management

    Get PDF
    Postprin

    Automatic Detection of Mass Outages in Radio Access Networks

    Get PDF
    Fault management in mobile networks is required for detecting, analysing, and fixing problems appearing in the mobile network. When a large problem appears in the mobile network, multiple alarms are generated from the network elements. Traditionally Network Operations Center (NOC) process the reported failures, create trouble tickets for problems, and perform a root cause analysis. However, alarms do not reveal the root cause of the failure, and the correlation of alarms is often complicated to determine. If the network operator can correlate alarms and manage clustered groups of alarms instead of separate ones, it saves costs, preserves the availability of the mobile network, and improves the quality of service. Operators may have several electricity providers and the network topology is not correlated with the electricity topology. Additionally, network sites and other network elements are not evenly distributed across the network. Hence, we investigate the suitability of a density-based clustering methods to detect mass outages and perform alarm correlation to reduce the amount of created trouble tickets. This thesis focuses on assisting the root cause analysis and detecting correlated power and transmission failures in the mobile network. We implement a Mass Outage Detection Service and form a custom density-based algorithm. Our service performs alarm correlation and creates clusters of possible power and transmission mass outage alarms. We have filed a patent application based on the work done in this thesis. Our results show that we are able to detect mass outages in real time from the data streams. The results also show that detected clusters reduce the number of created trouble tickets and help reduce of the costs of running the network. The number of trouble tickets decreases by 4.7-9.3% for the alarms we process in the service in the tested networks. When we consider only alarms included in the mass outage groups, the reduction is over 75%. Therefore continuing to use, test, and develop implemented Mass Outage Detection Service is beneficial for operators and automated NOC

    Data mining based cyber-attack detection

    Get PDF

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    ALACA: A platform for dynamic alarm collection and alert notification in network management systems

    Get PDF
    Mobile network operators run Operations Support Systems that produce vast amounts of alarm events. These events can have different significance levels and domains and also can trigger other ones. Network operators face the challenge to identify the significance and root causes of these system problems in real time and to keep the number of remedial actions at an optimal level, so that customer satisfaction rates can be guaranteed at a reasonable cost. In this paper, we propose a scalable streaming alarm management system, referred to as Alarm Collector and Analyzer, that includes complex event processing and root cause analysis. We describe a rule mining and root cause analysis solution for alarm event correlation and analyses. The solution includes a dynamic index for matching active alarms, an algorithm for generating candidate alarm rules, a sliding window–based approach to save system resources, and a graph-based solution to identify root causes. Alarm Collector and Analyzer is used in the network operation center of a major mobile telecom provider. It helps operators to enhance the design of their alarm management systems by allowing continuous analysis of data and event streams and predict network behavior with respect to potential failures by using the results of root cause analysis. We present experimental results that provide insights on performance of real-time alarm data analytics systems. Copyright © 2017 John Wiley & Sons, Ltd

    Towards False Alarm Reduction using Fuzzy If-Then Rules for Medical Cyber Physical Systems

    Get PDF
    • …
    corecore