6,672 research outputs found

    Cue combination for 3D location judgements

    Get PDF
    Cue combination rules have often been applied to the perception of surface shape but not to judgements of object location. Here, we used immersive virtual reality to explore the relationship between different cues to distance. Participants viewed a virtual scene and judged the change in distance of an object presented in two intervals, where the scene changed in size between intervals (by a factor of between 0.25 and 4). We measured thresholds for detecting a change in object distance when there were only 'physical' (stereo and motion parallax) or 'texture-based' cues (independent of the scale of the scene) and used these to predict biases in a distance matching task. Under a range of conditions, in which the viewing distance and position of the tarte relative to other objects was varied, the ration of 'physical' to 'texture-based' thresholds was a good predictor of biases in the distance matching task. The cue combination approach, which successfully accounts for our data, relies on quite different principles from those underlying geometric reconstruction

    Hubble Space Telescope astrometry of the closest brown dwarf binary system -- I. Overview and improved orbit

    Full text link
    Located at ~2pc, the L7.5+T0.5 dwarfs system WISE J104915.57-531906.1 (Luhman16AB) is the third closest system known to Earth, making it a key benchmark for detailed investigation of brown dwarf atmospheric properties, thermal evolution, multiplicity, and planet-hosting frequency. In the first study of this series -- based on a multi-cycle Hubble Space Telescope (HST) program -- we provide an overview of the project and present improved estimates of positions, proper motions, annual parallax, mass ratio, and the current best assessment of the orbital parameters of the A-B pair. Our HST observations encompass the apparent periastron of the binary at 220.5+/-0.2 mas at epoch 2016.402. Although our data seem to be inconsistent with recent ground-based astrometric measurements, we also exclude the presence of third bodies down to Neptune masses and periods longer than a year.Comment: 19 pages, 9 figures, 9 tables. Accepted for publication in MNRAS on 2017 May

    Reducing "Structure From Motion": a General Framework for Dynamic Vision - Part 1: Modeling

    Get PDF
    The literature on recursive estimation of structure and motion from monocular image sequences comprises a large number of different models and estimation techniques. We propose a framework that allows us to derive and compare all models by following the idea of dynamical system reduction. The "natural" dynamic model, derived by the rigidity constraint and the perspective projection, is first reduced by explicitly decoupling structure (depth) from motion. Then implicit decoupling techniques are explored, which consist of imposing that some function of the unknown parameters is held constant. By appropriately choosing such a function, not only can we account for all models seen so far in the literature, but we can also derive novel ones

    Reducing “Structure from Motion”: a general framework for dynamic vision. 1. Modeling

    Get PDF
    The literature on recursive estimation of structure and motion from monocular image sequences comprises a large number of apparently unrelated models and estimation techniques. We propose a framework that allows us to derive and compare all models by following the idea of dynamical system reduction. The “natural” dynamic model, derived from the rigidity constraint and the projection model, is first reduced by explicitly decoupling structure (depth) from motion. Then, implicit decoupling techniques are explored, which consist of imposing that some function of the unknown parameters is held constant. By appropriately choosing such a function, not only can we account for models seen so far in the literature, but we can also derive novel ones

    Depth Perception in Driving: Alcohol Intoxication, Eye Movement Changes, and the Disruption of Motion Parallax

    Get PDF
    Motion parallax, the ability to recover depth from retinal motion, is acrucial part of the visual information needed for driving. Recent work indicatesthat the perception of depth from motion parallax relies on the slow eyemovement system. It is well known that that alcohol intoxication reduces the gainof this slow eye movement system, the basis for the horizontal gaze nystagmus field sobriety test. The current study shows that alcohol intoxication also impairsthe perception of depth from motion parallax due to its influence on the slow eyemovement system. Observer thresholds in both active and passive motion parallaxtasks are significantly increased by acute alcohol intoxication. Perhaps such afailure of motion parallax plays a role when intoxicated drivers must make quickjudgements with what could be inaccurate or missing perceptual information aboutthe location of obstacles around them

    Local kinematics of K and M giants from Coravel/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters

    Full text link
    The availability of the Hipparcos Catalogue triggered many kinematic and dynamical studies of the solar neighbourhood. Nevertheless, those studies generally lacked the third component of the space velocities, i.e., the radial velocities. This work presents the kinematic analysis of 5952 K and 739 M giants in the solar neighbourhood which includes for the first time radial velocity data from a large survey performed with the CORAVEL spectrovelocimeter. It also uses proper motions from the Tycho-2 catalogue, which are expected to be more accurate than the Hipparcos ones. The UV-plane constructed from these data for the stars with precise parallaxes reveals a rich small-scale structure, with several clumps corresponding to the Hercules stream, the Sirius moving group, and the Hyades and Pleiades superclusters. A maximum-likelihood method, based on a bayesian approach, has been applied to the data, in order to make full use of all the available stars and to derive the kinematic properties of these subgroups. Isochrones in the Hertzsprung-Russell diagram reveal a very wide range of ages for stars belonging to these groups. These groups are most probably related to the dynamical perturbation by transient spiral waves rather than to cluster remnants. A possible explanation for the presence of young clusters in the same area of the UV-plane is that they have been put there by the spiral wave associated with their formation, while the kinematics of the older stars of our sample has also been disturbed by the same wave. The term "dynamical stream" for the kinematic groups is thus more appropriate than the traditional term "supercluster" since it involves stars of different ages, not born at the same place nor at the same time.Comment: 22 pages, 16 figures, accepted for publication in A&

    Spectra disentangling applied to the Hyades binary Theta^2 Tau AB: new orbit, orbital parallax and component properties

    Full text link
    Theta^2 Tauri is a detached and single-lined interferometric-spectroscopic binary as well as the most massive binary system of the Hyades cluster. The system revolves in an eccentric orbit with a periodicity of 140.7 days. The secondary has a similar temperature but is less evolved and fainter than the primary. It is also rotating more rapidly. Since the composite spectra are heavily blended, the direct extraction of radial velocities over the orbit of component B was hitherto unsuccessful. Using high-resolution spectroscopic data recently obtained with the Elodie (OHP, France) and Hermes (ORM, La Palma, Spain) spectrographs, and applying a spectra disentangling algorithm to three independent data sets including spectra from the Oak Ridge Observatory (USA), we derived an improved spectroscopic orbit and refined the solution by performing a combined astrometric-spectroscopic analysis based on the new spectroscopy and the long-baseline data from the Mark III optical interferometer. As a result, the velocity amplitude of the fainter component is obtained in a direct and objective way. Major progress based on this new determination includes an improved computation of the orbital parallax. Our mass ratio is in good agreement with the older estimates of Peterson et al. (1991, 1993), but the mass of the primary is 15-25% higher than the more recent estimates by Torres et al. (1997) and Armstrong et al. (2006). Due to the strategic position of the components in the turnoff region of the cluster, these new determinations imply stricter constraints for the age and the metallicity of the Hyades cluster. The location of component B can be explained by current evolutionary models, but the location of the more evolved component A is not trivially explained and requires a detailed abundance analysis of its disentangled spectrum.Comment: in press, 13 pages, 10 Postscript figures, 5 tables. Table~4 is available as online material. Keywords: astrometry - techniques: high angular resolution - stars: binaries: visual - stars: binaries: spectroscopic - stars: fundamental parameter
    • …
    corecore