41,788 research outputs found

    GTI-space : the space of generalized topological indices

    Get PDF
    A new extension of the generalized topological indices (GTI) approach is carried out torepresent 'simple' and 'composite' topological indices (TIs) in an unified way. Thisapproach defines a GTI-space from which both simple and composite TIs represent particular subspaces. Accordingly, simple TIs such as Wiener, Balaban, Zagreb, Harary and Randićconnectivity indices are expressed by means of the same GTI representation introduced for composite TIs such as hyper-Wiener, molecular topological index (MTI), Gutman index andreverse MTI. Using GTI-space approach we easily identify mathematical relations between some composite and simple indices, such as the relationship between hyper-Wiener and Wiener index and the relation between MTI and first Zagreb index. The relation of the GTI space with the sub-structural cluster expansion of property/activity is also analysed and some routes for the applications of this approach to QSPR/QSAR are also given

    A network model of interpersonal alignment in dialog

    Get PDF
    In dyadic communication, both interlocutors adapt to each other linguistically, that is, they align interpersonally. In this article, we develop a framework for modeling interpersonal alignment in terms of the structural similarity of the interlocutors’ dialog lexica. This is done by means of so-called two-layer time-aligned network series, that is, a time-adjusted graph model. The graph model is partitioned into two layers, so that the interlocutors’ lexica are captured as subgraphs of an encompassing dialog graph. Each constituent network of the series is updated utterance-wise. Thus, both the inherent bipartition of dyadic conversations and their gradual development are modeled. The notion of alignment is then operationalized within a quantitative model of structure formation based on the mutual information of the subgraphs that represent the interlocutor’s dialog lexica. By adapting and further developing several models of complex network theory, we show that dialog lexica evolve as a novel class of graphs that have not been considered before in the area of complex (linguistic) networks. Additionally, we show that our framework allows for classifying dialogs according to their alignment status. To the best of our knowledge, this is the first approach to measuring alignment in communication that explores the similarities of graph-like cognitive representations. Keywords: alignment in communication; structural coupling; linguistic networks; graph distance measures; mutual information of graphs; quantitative network analysi

    Networks of equities in financial markets

    Full text link
    We review the recent approach of correlation based networks of financial equities. We investigate portfolio of stocks at different time horizons, financial indices and volatility time series and we show that meaningful economic information can be extracted from noise dressed correlation matrices. We show that the method can be used to falsify widespread market models by directly comparing the topological properties of networks of real and artificial markets.Comment: 9 pages, 8 figures. Accepted for publication in EPJ

    Topological Signals of Singularities in Ricci Flow

    Full text link
    We implement methods from computational homology to obtain a topological signal of singularity formation in a selection of geometries evolved numerically by Ricci flow. Our approach, based on persistent homology, produces precise, quantitative measures describing the behavior of an entire collection of data across a discrete sample of times. We analyze the topological signals of geometric criticality obtained numerically from the application of persistent homology to models manifesting singularities under Ricci flow. The results we obtain for these numerical models suggest that the topological signals distinguish global singularity formation (collapse to a round point) from local singularity formation (neckpinch). Finally, we discuss the interpretation and implication of these results and future applications.Comment: 24 pages, 14 figure

    Tensor product representation of topological ordered phase: necessary symmetry conditions

    Full text link
    The tensor product representation of quantum states leads to a promising variational approach to study quantum phase and quantum phase transitions, especially topological ordered phases which are impossible to handle with conventional methods due to their long range entanglement. However, an important issue arises when we use tensor product states (TPS) as variational states to find the ground state of a Hamiltonian: can arbitrary variations in the tensors that represent ground state of a Hamiltonian be induced by local perturbations to the Hamiltonian? Starting from a tensor product state which is the exact ground state of a Hamiltonian with Z2\mathbb{Z}_2 topological order, we show that, surprisingly, not all variations of the tensors correspond to the variation of the ground state caused by local perturbations of the Hamiltonian. Even in the absence of any symmetry requirement of the perturbed Hamiltonian, one necessary condition for the variations of the tensors to be physical is that they respect certain Z2\mathbb{Z}_2 symmetry. We support this claim by calculating explicitly the change in topological entanglement entropy with different variations in the tensors. This finding will provide important guidance to numerical variational study of topological phase and phase transitions. It is also a crucial step in using TPS to study universal properties of a quantum phase and its topological order.Comment: 10 pages, 6 figure
    corecore