323,587 research outputs found

    A Litigator\u27s Guide to the Internet of Things

    Get PDF
    Maybe you\u27ve heard about the Internet of Things (loT). It\u27s the network of physical objects (or things ) that connect to the Internet and each other and have the ability to collect and exchange data. It includes a variety of devices with sensors, vehicles, buildings, and other items that contain electronics, software, and sensors. Some loT objects have embedded intelligence, which allows them to detect and react to changes in their physical state. Though there is no specific definition of loT, the concept focuses on how computers, sensors, and objects interact with each other and collect information relating to their surroundings

    A survey on security and privacy issues in IoV

    Get PDF
    As an up-and-coming branch of the internet of things, internet of vehicles (IoV) is imagined to fill in as a fundamental information detecting and processing platform for astute transportation frameworks. Today, vehicles are progressively being associated with the internet of things which empower them to give pervasive access to data to drivers and travelers while moving. Be that as it may, as the quantity of associated vehicles continues expanding, new prerequisites, (for example, consistent, secure, vigorous, versatile data trade among vehicles, people, and side of the road frameworks) of vehicular systems are developing. Right now, the unique idea of vehicular specially appointed systems is being changed into another idea called the internet of vehicles (IoV). We talk about the issues faced in implementing a secure IoV architecture. We examine the various challenges in implementing security and privacy in IoV by reviewing past papers along with pointing out research gaps and possible future work and putting forth our on inferences relating to each paper

    Integration of Education and Internet of Things as an Environmental Conservation Effort

    Get PDF
    Abstract. The population growth rate and the increasing human need for food and shelter cause the environment to be sacrificed to meet human life needs. Between humans and the environment, there is a meaningful reciprocal relationship to meet their needs. In recent years, environmental issues have become an essential concern in the world. These environmental problems are global warming, garbage, and energy needs that encourage natural resource exploitation. Integrating the concept of the Internet of Things in environmental education, relating to the prevention of environmental damage. Internet of Things (IoT) is a development in the technological revolution in the industrial field. Energy saving can also be done by applying the concept of the Internet of Things. In this case, it can be done by introducing the public to smart homes and Internet of Things tools to monitor and save energy consumption. The use of the Internet of Things can increase the efficiency of energy use because users can automatically turn off a number of electrical devices when they are used enough so that no energy is wasted. Keywords: Environmental Conversation, Internet of Things (IoT), Environmental Problem

    Massive-Scale Automation in Cyber-Physical Systems: Vision & Challenges

    Get PDF
    The next era of computing is the evolution of the Internet of Things (IoT) and Smart Cities with development of the Internet of Simulation (IoS). The existing technologies of Cloud, Edge, and Fog computing as well as HPC being applied to the domains of Big Data and deep learning are not adequate to handle the scale and complexity of the systems required to facilitate a fully integrated and automated smart city. This integration of existing systems will create an explosion of data streams at a scale not yet experienced. The additional data can be combined with simulations as services (SIMaaS) to provide a shared model of reality across all integrated systems, things, devices, and individuals within the city. There are also numerous challenges in managing the security and safety of the integrated systems. This paper presents an overview of the existing state-of-the-art in automating, augmenting, and integrating systems across the domains of smart cities, autonomous vehicles, energy efficiency, smart manufacturing in Industry 4.0, and healthcare. Additionally the key challenges relating to Big Data, a model of reality, augmentation of systems, computation, and security are examined

    Intergenerational interpretation of the Internet of Things

    Get PDF
    This report investigates how different generations within a household interpret individual members’ data generated by the Internet of Things (IoT). Adopting a mixed methods approach, we are interested in interpretations of the IoT by teenagers, their parents and grandparents, and how they understand and interact with the kinds of data that might be generated by IoT devices. The first part of this document is a technical review that outlines the key existing and envisaged technologies that make up the IoT. It explores the definition and scope of the Internet of Things. Hardware, networking, intelligent objects and Human-Computer Interaction implications are all discussed in detail. The second section focuses on the human perspective, looking at psychological and sociological issues relating to the interpretation of information generated by the IoT. Areas such as privacy, data ambiguity, ageism, and confirmation bias are explored. The third section brings both aspects together, examining how technical and social aspects of the IoT interact in four specific application domains: energy monitoring, groceries and shopping, physical gaming, and sharing experiences. This section also presents three household scenarios developed to communicate and explore the complexities of integrating IoT technologies into family life. The final section draws together all the findings and suggests future research

    Smart object-oriented access control: Distributed access control for the Internet of Things

    Get PDF
    Ensuring that data and devices are secure is of critical importance to information technology. While access control has held a key role in traditional computer security, its role in the evolving Internet of Things is less clear. In particular, the access control literature has suggested that new challenges, such as multi-user controls, fine-grained controls, and dynamic controls, prompt a foundational re-thinking of access control. We analyse these challenges, finding instead that the main foundational challenge posed by the Internet of Things involves decentralization: accurately describing access control in Internet of Things environments (e.g., the Smart Home) requires a new model of multiple, independent access control systems. To address this challenge, we propose a meta-model (i.e., a model of models): Smart Object-Oriented Access Control (SOOAC). This model is an extension of the XACML framework, built from principles relating to modularity adapted from object-oriented programming and design. SOOAC draws attention to a new class of problem involving the resolution of policy conflicts that emerge from the interaction of smart devices in the home. Contrary to traditional (local) policy conflicts, these global policy conflicts emerge when contradictory policies exist across multiple access control systems. We give a running example of a global policy conflict involving transitive access. To automatically avoid global policy conflicts before they arise, we extend SOOAC with a recursive algorithm through which devices communicate access requests before allowing or denying access themselves. This algorithm ensures that both individual devices and the collective smart home are secure. We implement SOOAC within a prototype smart home and assess its validity in terms of effectiveness and efficiency. Our analysis shows that SOOAC is successful at avoiding policy conflicts before they emerge, in real time. Finally, we explore improvements that can be made to SOOAC and suggest directions for future work
    • …
    corecore